metadata
language:
- zh
license: apache-2.0
tags:
- bert
inference: true
widget:
- text: 生活的真谛是[MASK]。
Erlangshen-Deberta-XLarge-710M-Chinese,one model of Fengshenbang-LM
The 710 million parameter deberta-V2 base model, using 180G Chinese data, 24 A100(40G) training for 21 days,which is a encoder-only transformer structure. Consumed totally 700M samples. Still training...
Task Description
Erlangshen-Deberta-XLarge-710M-Chinese is pre-trained by bert like mask task from Deberta paper
Usage
from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline
import torch
tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-Deberta-XLarge-710M-Chinese', use_fast=false)
model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-Deberta-XLarge-710M-Chinese')
text = '生活的真谛是[MASK]。'
fillmask_pipe = FillMaskPipeline(model, tokenizer, device=-1)
print(fillmask_pipe(text, top_k=10))
Finetune
We present the dev results on some tasks.
Model | AFQMC | TNEWS1.1 | IFLYTEK | OCNLI | CMNLI |
---|---|---|---|---|---|
RoBERTa-Large | 0.7488 | 0.5879 | 0.6152 | 0.777 | 0.814 |
Erlangshen-Deberta-XLarge-710M-Chinese | 0.7549 | 0.5873 | 0.6177 | 0.8012 | 0.8389 |
Citation
If you find the resource is useful, please cite the following website in your paper.
@misc{Fengshenbang-LM,
title={Fengshenbang-LM},
author={IDEA-CCNL},
year={2022},
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}