RoBERTa_Combined_Generated_v2_2000_Fold2
This model is a fine-tuned version of ICT2214Team7/RoBERTa_Test_Training on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0495
- Precision: 0.8878
- Recall: 0.9350
- F1: 0.9108
- Accuracy: 0.9859
- Report: {'AGE': {'precision': 0.9528301886792453, 'recall': 0.9901960784313726, 'f1-score': 0.9711538461538463, 'support': 102}, 'LOC': {'precision': 0.8025078369905956, 'recall': 0.927536231884058, 'f1-score': 0.8605042016806723, 'support': 276}, 'NAT': {'precision': 0.927710843373494, 'recall': 0.9447852760736196, 'f1-score': 0.9361702127659575, 'support': 163}, 'ORG': {'precision': 0.9142857142857143, 'recall': 0.8827586206896552, 'f1-score': 0.8982456140350877, 'support': 145}, 'PER': {'precision': 0.95, 'recall': 0.95, 'f1-score': 0.9500000000000001, 'support': 160}, 'micro avg': {'precision': 0.8877665544332211, 'recall': 0.9349881796690307, 'f1-score': 0.9107656879677606, 'support': 846}, 'macro avg': {'precision': 0.9094669166658098, 'recall': 0.939055241415741, 'f1-score': 0.9232147749271128, 'support': 846}, 'weighted avg': {'precision': 0.8918074920756447, 'recall': 0.9349881796690307, 'f1-score': 0.9118182159426674, 'support': 846}}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Report |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 160 | 0.0545 | 0.8544 | 0.8948 | 0.8741 | 0.9811 | {'AGE': {'precision': 0.9439252336448598, 'recall': 0.9901960784313726, 'f1-score': 0.9665071770334929, 'support': 102}, 'LOC': {'precision': 0.7580645161290323, 'recall': 0.8514492753623188, 'f1-score': 0.8020477815699659, 'support': 276}, 'NAT': {'precision': 0.8895705521472392, 'recall': 0.8895705521472392, 'f1-score': 0.8895705521472392, 'support': 163}, 'ORG': {'precision': 0.8936170212765957, 'recall': 0.8689655172413793, 'f1-score': 0.881118881118881, 'support': 145}, 'PER': {'precision': 0.9090909090909091, 'recall': 0.9375, 'f1-score': 0.923076923076923, 'support': 160}, 'micro avg': {'precision': 0.8544018058690744, 'recall': 0.8947990543735225, 'f1-score': 0.874133949191686, 'support': 846}, 'macro avg': {'precision': 0.8788536464577271, 'recall': 0.907536284636462, 'f1-score': 0.8924642629893004, 'support': 846}, 'weighted avg': {'precision': 0.8576066120839723, 'recall': 0.8947990543735225, 'f1-score': 0.8751814009754992, 'support': 846}} |
No log | 2.0 | 320 | 0.0587 | 0.8527 | 0.9374 | 0.8930 | 0.9832 | {'AGE': {'precision': 0.9351851851851852, 'recall': 0.9901960784313726, 'f1-score': 0.961904761904762, 'support': 102}, 'LOC': {'precision': 0.7565982404692082, 'recall': 0.9347826086956522, 'f1-score': 0.8363047001620746, 'support': 276}, 'NAT': {'precision': 0.8633879781420765, 'recall': 0.9693251533742331, 'f1-score': 0.9132947976878613, 'support': 163}, 'ORG': {'precision': 0.9064748201438849, 'recall': 0.8689655172413793, 'f1-score': 0.8873239436619718, 'support': 145}, 'PER': {'precision': 0.9433962264150944, 'recall': 0.9375, 'f1-score': 0.9404388714733543, 'support': 160}, 'micro avg': {'precision': 0.8526881720430107, 'recall': 0.9373522458628841, 'f1-score': 0.893018018018018, 'support': 846}, 'macro avg': {'precision': 0.88100849007109, 'recall': 0.9401538715485274, 'f1-score': 0.9078534149780048, 'support': 846}, 'weighted avg': {'precision': 0.8597216180175263, 'recall': 0.9373522458628841, 'f1-score': 0.8947205984029104, 'support': 846}} |
No log | 3.0 | 480 | 0.0495 | 0.8878 | 0.9350 | 0.9108 | 0.9859 | {'AGE': {'precision': 0.9528301886792453, 'recall': 0.9901960784313726, 'f1-score': 0.9711538461538463, 'support': 102}, 'LOC': {'precision': 0.8025078369905956, 'recall': 0.927536231884058, 'f1-score': 0.8605042016806723, 'support': 276}, 'NAT': {'precision': 0.927710843373494, 'recall': 0.9447852760736196, 'f1-score': 0.9361702127659575, 'support': 163}, 'ORG': {'precision': 0.9142857142857143, 'recall': 0.8827586206896552, 'f1-score': 0.8982456140350877, 'support': 145}, 'PER': {'precision': 0.95, 'recall': 0.95, 'f1-score': 0.9500000000000001, 'support': 160}, 'micro avg': {'precision': 0.8877665544332211, 'recall': 0.9349881796690307, 'f1-score': 0.9107656879677606, 'support': 846}, 'macro avg': {'precision': 0.9094669166658098, 'recall': 0.939055241415741, 'f1-score': 0.9232147749271128, 'support': 846}, 'weighted avg': {'precision': 0.8918074920756447, 'recall': 0.9349881796690307, 'f1-score': 0.9118182159426674, 'support': 846}} |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for ICT2214Team7/RoBERTa_Combined_Generated_v2_2000_Fold2
Base model
distilbert/distilroberta-base
Finetuned
ICT2214Team7/RoBERTa_Test_Training