RoBERTa_Combined_Generated_v2
This model is a fine-tuned version of ICT2214Team7/RoBERTa_Test_Training on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0086
- Precision: 0.9055
- Recall: 0.8647
- F1: 0.8846
- Accuracy: 0.9969
- Report: {'PER': {'precision': 0.905511811023622, 'recall': 0.8646616541353384, 'f1-score': 0.8846153846153845, 'support': 133}, 'micro avg': {'precision': 0.905511811023622, 'recall': 0.8646616541353384, 'f1-score': 0.8846153846153845, 'support': 133}, 'macro avg': {'precision': 0.905511811023622, 'recall': 0.8646616541353384, 'f1-score': 0.8846153846153845, 'support': 133}, 'weighted avg': {'precision': 0.905511811023622, 'recall': 0.8646616541353384, 'f1-score': 0.8846153846153845, 'support': 133}}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Report |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 200 | 0.0104 | 0.8768 | 0.9098 | 0.8930 | 0.9965 | {'PER': {'precision': 0.8768115942028986, 'recall': 0.9097744360902256, 'f1-score': 0.8929889298892988, 'support': 133}, 'micro avg': {'precision': 0.8768115942028986, 'recall': 0.9097744360902256, 'f1-score': 0.8929889298892988, 'support': 133}, 'macro avg': {'precision': 0.8768115942028986, 'recall': 0.9097744360902256, 'f1-score': 0.8929889298892988, 'support': 133}, 'weighted avg': {'precision': 0.8768115942028986, 'recall': 0.9097744360902256, 'f1-score': 0.8929889298892988, 'support': 133}} |
No log | 2.0 | 400 | 0.0083 | 0.9058 | 0.9398 | 0.9225 | 0.9974 | {'PER': {'precision': 0.9057971014492754, 'recall': 0.9398496240601504, 'f1-score': 0.9225092250922509, 'support': 133}, 'micro avg': {'precision': 0.9057971014492754, 'recall': 0.9398496240601504, 'f1-score': 0.9225092250922509, 'support': 133}, 'macro avg': {'precision': 0.9057971014492754, 'recall': 0.9398496240601504, 'f1-score': 0.9225092250922509, 'support': 133}, 'weighted avg': {'precision': 0.9057971014492754, 'recall': 0.9398496240601504, 'f1-score': 0.9225092250922509, 'support': 133}} |
0.0207 | 3.0 | 600 | 0.0086 | 0.9055 | 0.8647 | 0.8846 | 0.9969 | {'PER': {'precision': 0.905511811023622, 'recall': 0.8646616541353384, 'f1-score': 0.8846153846153845, 'support': 133}, 'micro avg': {'precision': 0.905511811023622, 'recall': 0.8646616541353384, 'f1-score': 0.8846153846153845, 'support': 133}, 'macro avg': {'precision': 0.905511811023622, 'recall': 0.8646616541353384, 'f1-score': 0.8846153846153845, 'support': 133}, 'weighted avg': {'precision': 0.905511811023622, 'recall': 0.8646616541353384, 'f1-score': 0.8846153846153845, 'support': 133}} |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for ICT2214Team7/RoBERTa_Combined_Generated_v2
Base model
distilbert/distilroberta-base
Finetuned
ICT2214Team7/RoBERTa_Test_Training