File size: 20,253 Bytes
5096607
 
4e45d68
5096607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
###########################################################################
# Computer vision - Binary neural networks demo software by HyperbeeAI.   #
# Copyrights © 2023 Hyperbee.AI Inc. All rights reserved. hello@hyperbee.ai #
###########################################################################
import torch, sys
import torch.nn as nn
import numpy as np
from torch.autograd import Function
from functions import quantization, clamping_qa, clamping_hw, calc_out_shift

###################################################
### Base layer for conv/linear, 
###    enabling quantization-related mechanisms
class shallow_base_layer(nn.Module):
    def __init__(
            self,
            quantization_mode = 'fpt', # 'fpt', 'qat', 'qat_ap' and 'eval'
            pooling_flag      = None,  # boolean flag for now, only maxpooling of 2-pools with stride 2
            operation_module  = None,  # torch nn module for keeping and updating conv/linear parameters 
            operation_fcnl    = None,  # torch nn.functional for actually doing the operation
            activation_module = None,  # torch nn module for relu/abs
            batchnorm_module  = None,  # torch nn module for batchnorm, see super
            output_width_30b  = False  # boolean flag that chooses between "bigdata" (32b) and normal (8b) activation modes for MAX78000
    ):
        super().__init__()

        ###############################################################################
        # Initialize stuff that won't change throughout the model's lifetime here
        # since this place will only be run once (first time the model is declared)
        if(pooling_flag==True):
            self.pool   = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
        else:
            self.pool   = None

        ### Burak: we have to access and change (forward pass) and also train (backward pass) parameters .weight and .bias for the operations
        ###        therefore we keep both a functional and a module for Conv2d/Linear. The name "op" is mandatory for keeping params in Maxim 
        ###        checkpoint format.
        self.op         = operation_module
        self.op_fcn     = operation_fcnl
        self.act        = activation_module
        self.bn         = batchnorm_module
        self.wide       = output_width_30b

        ###############################################################################
        # Initialize stuff that will change during mode progression (FPT->QAT->Eval/HW).
        self.mode               = quantization_mode;
        self.quantize_Q_ud_8b   = None
        self.quantize_Q_ud_wb   = None
        self.quantize_Q_ud_bb   = None
        self.quantize_Q_ud_ap   = None
        self.quantize_Q_d_8b    = None
        self.quantize_Q_u_wb    = None
        self.quantize_Q_ud_wide = None
        self.quantize_Q_d_wide  = None
        self.clamp_C_qa_8b      = None
        self.clamp_C_qa_bb      = None
        self.clamp_C_qa_wb      = None
        self.clamp_C_hw_8b      = None
        self.clamp_C_qa_wide    = None
        self.clamp_C_hw_wide    = None

        ### Burak: these aren't really trainable parameters, but they're logged in the Maxim checkpoint format. It seems they marked 
        ###        them as "non-trainable parameters" to get them automatically saved in the state_dict
        self.output_shift        = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) ### Burak: we called this los, this varies, default:0
        self.weight_bits         = nn.Parameter(torch.Tensor([ 8 ]), requires_grad=False) ### Burak: we called this wb, this varies, default:8
        self.bias_bits           = nn.Parameter(torch.Tensor([ 8 ]), requires_grad=False) ### Burak: this is always 8
        self.quantize_activation = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware, default: fpt
        self.adjust_output_shift = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware, default: fpt
        self.shift_quantile      = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this varies, default:1 (naive)

        ###############################################################################
        # Do first mode progression (to the default)
        ### Burak: this recognizes that layer configuration is done via a function, 
        ###        thus, can be done again in training time for mode progression
        weight_bits      = self.weight_bits
        bias_bits        = self.bias_bits
        shift_quantile   = self.shift_quantile
        self.configure_layer_base( weight_bits, bias_bits, shift_quantile )

    # This will be called during mode progression to set fields,
    # check workflow-training-modes.png in doc for further info.
    # sets functions for all modes though, not just the selected mode
    def configure_layer_base(self, weight_bits, bias_bits, shift_quantile):
        # quantization operators
        self.quantize_Q_ud_8b   = quantization(xb = 8,           mode ='updown' , wide=False) # 8 here is activation bits
        self.quantize_Q_ud_wb   = quantization(xb = weight_bits, mode ='updown' , wide=False) 
        self.quantize_Q_ud_bb   = quantization(xb = bias_bits,   mode ='updown' , wide=False) 
        self.quantize_Q_ud_ap   = quantization(xb = 2,        mode ='updown_ap' , wide=False) # 2 here is dummy, mode antipodal overrides xb
        self.quantize_Q_d_8b    = quantization(xb = 8,           mode ='down'   , wide=False) # 8 here is activation bits
        self.quantize_Q_u_wb    = quantization(xb = weight_bits, mode ='up'     , wide=False)
        self.quantize_Q_ud_wide = quantization(xb = 8,           mode ='updown' , wide=True)  # 8 here is activation bits, but its wide, so check inside
        self.quantize_Q_d_wide  = quantization(xb = 8,           mode ='down'   , wide=True)  # 8 here is activation bits, but its wide, so check inside
        
        # clamping operators
        self.clamp_C_qa_8b    = clamping_qa(xb = 8,           wide=False) # 8 here is activation bits
        self.clamp_C_qa_bb    = clamping_qa(xb = bias_bits,   wide=False)
        self.clamp_C_qa_wb    = clamping_qa(xb = weight_bits, wide=False)
        self.clamp_C_hw_8b    = clamping_hw(xb = 8,           wide=False) # 8 here is activation bits
        self.clamp_C_qa_wide  = clamping_qa(xb = None,        wide=True)  # None to avoid misleading info on the # of bits, check inside
        self.clamp_C_hw_wide  = clamping_hw(xb = None,        wide=True)  # None to avoid misleading info on the # of bits, check inside

        # state variables
        self.weight_bits     = nn.Parameter(torch.Tensor([ weight_bits    ]), requires_grad=False)
        self.bias_bits       = nn.Parameter(torch.Tensor([ bias_bits      ]), requires_grad=False)
        self.shift_quantile  = nn.Parameter(torch.Tensor([ shift_quantile ]), requires_grad=False)

    # This will be called during mode progression, during training
    def mode_fpt2qat(self, quantization_mode):
        # just fold batchnorms
        if(self.bn is not None):
            w_fp = self.op.weight.data
            b_fp = self.op.bias.data
    
            running_mean_mu     = self.bn.running_mean
            running_var         = self.bn.running_var
            running_stdev_sigma = torch.sqrt(running_var + 1e-20)
    
            w_hat = w_fp * (1.0 / (running_stdev_sigma*4.0)).reshape((w_fp.shape[0],) + (1,) * (len(w_fp.shape) - 1))
            b_hat = (b_fp - running_mean_mu)/(running_stdev_sigma*4.0)
    
            self.op.weight.data = w_hat
            self.op.bias.data   = b_hat
            self.bn             = None
        else:
            pass
            #print('This layer does not have batchnorm')
        self.mode                = quantization_mode;
        self.quantize_activation = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware
        self.adjust_output_shift = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware

    # This will be called during mode progression after training, for eval
    def mode_qat2hw(self, quantization_mode):
        w_hat = self.op.weight.data
        b_hat = self.op.bias.data

        shift = -self.output_shift.data;
        s_o   = 2**(shift)
        wb    = self.weight_bits.data.cpu().numpy()[0]
       
        w_clamp = [-2**(wb-1)  , 2**(wb-1)-1 ]
        b_clamp = [-2**(wb+8-2), 2**(wb+8-2)-1] # 8 here is activation bits

        w = w_hat.mul(2**(wb -1)).mul(s_o).add(0.5).floor()
        w = w.clamp(min=w_clamp[0],max=w_clamp[1])

        b = b_hat.mul(2**(wb -1 + 7)).mul(s_o).add(0.5).floor()
        b = b.clamp(min=b_clamp[0],max=b_clamp[1])

        self.op.weight.data      = w
        self.op.bias.data        = b
        self.mode                = quantization_mode;
        self.quantize_activation = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware
        self.adjust_output_shift = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware

    def mode_qat_ap2hw(self, quantization_mode):
        w_hat = self.op.weight.data
        b_hat = self.op.bias.data

        shift = -self.output_shift.data;
        s_o   = 2**(shift)
        wb    = self.weight_bits.data.cpu().numpy()[0]

        if(wb==2):
            w = self.quantize_Q_ud_ap(w_hat).mul(2.0)
        else:
            w_clamp = [-2**(wb-1)  , 2**(wb-1)-1 ]
            w = w_hat.mul(2**(wb -1)).mul(s_o).add(0.5).floor()
            w = w.clamp(min=w_clamp[0],max=w_clamp[1])

        b_clamp = [-2**(wb+8-2), 2**(wb+8-2)-1] # 8 here is activation bits
        b = b_hat.mul(2**(wb -1 + 7)).mul(s_o).add(0.5).floor()
        b = b.clamp(min=b_clamp[0],max=b_clamp[1])

        self.op.weight.data      = w
        self.op.bias.data        = b
        self.mode                = quantization_mode;
        self.quantize_activation = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) ### Burak: this is 0 in FPT, 1 in QAT & eval/hardware
        self.adjust_output_shift = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) ### Burak: this is 1 in FPT & QAT, 0 in eval/hardware

        
    def forward(self, x):
        if(self.pool is not None):
            x = self.pool(x)

        if(self.mode == 'fpt'):
            # pre-compute stuff
            w_fp = self.op.weight
            b_fp = self.op.bias

            # actual forward pass
            x = self.op_fcn(x, w_fp, b_fp, self.op.stride, self.op.padding)
            if(self.bn is not None):
                x = self.bn(x)     # make sure var=1 and mean=0
                x = x / 4.0        # since BN is only making sure var=1 and mean=0, 1/4 is to keep everything within [-1,1] w/ hi prob.
            if(self.act is not None):
                x = self.act(x)
            if((self.wide) and (self.act is None)):
                x = self.clamp_C_qa_wide(x)
            else:
                x = self.clamp_C_qa_8b(x)

            # save stuff (los is deactivated in fpt)
            self.output_shift        = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) # functional, used in Maxim-friendly checkpoints
            self.quantize_activation = nn.Parameter(torch.Tensor([ 0 ]), requires_grad=False) # ceremonial, for Maxim-friendly checkpoints
            self.adjust_output_shift = nn.Parameter(torch.Tensor([ 1 ]), requires_grad=False) # ceremonial, for Maxim-friendly checkpoints

        elif(self.mode == 'qat'):
            ###############################################################################
            ## ASSUMPTION: batchnorms are already folded before coming here. Check doc,  ##
            ## the parameters with _fp and with _hat are of different magnitude          ##
            ###############################################################################

            # pre-compute stuff
            w_hat = self.op.weight
            b_hat = self.op.bias
            los  = calc_out_shift(w_hat.detach(), b_hat.detach(), self.shift_quantile.detach())            
            s_w  = 2**(-los)
            s_o  = 2**(los)
            w_hat_q = self.clamp_C_qa_wb(self.quantize_Q_ud_wb(w_hat*s_w));
            b_hat_q = self.clamp_C_qa_bb(self.quantize_Q_ud_bb(b_hat*s_w));

            # actual forward pass
            x = self.op_fcn(x, w_hat_q, b_hat_q, self.op.stride, self.op.padding)
            x = x*s_o
            if(self.act is not None):
                x = self.act(x)
            if((self.wide) and (self.act is None)):
                x = self.quantize_Q_ud_wide(x)
                x = self.clamp_C_qa_wide(x)
            else:
                x = self.quantize_Q_ud_8b(x)
                x = self.clamp_C_qa_8b(x)

            # save stuff
            self.output_shift        = nn.Parameter(torch.Tensor([ los ]), requires_grad=False) # functional, used in Maxim-friendly checkpoints

        elif(self.mode == 'qat_ap'):
            ###############################################################################
            ## ASSUMPTION: batchnorms are already folded before coming here. Check doc,  ##
            ## the parameters with _fp and with _hat are of different magnitude          ##
            ###############################################################################

            # pre-compute stuff
            w_hat = self.op.weight
            b_hat = self.op.bias
            los  = calc_out_shift(w_hat.detach(), b_hat.detach(), self.shift_quantile.detach())            
            s_w  = 2**(-los)
            s_o  = 2**(los)
            ##############################################
            # This is the only difference from qat
            if(self.weight_bits.data==2):
                w_hat_q = self.quantize_Q_ud_ap(w_hat*s_w);
            else:
                w_hat_q = self.clamp_C_qa_wb(self.quantize_Q_ud_wb(w_hat*s_w));
            ##############################################
            b_hat_q = self.clamp_C_qa_bb(self.quantize_Q_ud_bb(b_hat*s_w));

            # actual forward pass
            x = self.op_fcn(x, w_hat_q, b_hat_q, self.op.stride, self.op.padding)
            x = x*s_o
            if(self.act is not None):
                x = self.act(x)
            if((self.wide) and (self.act is None)):
                x = self.quantize_Q_ud_wide(x)
                x = self.clamp_C_qa_wide(x)
            else:
                x = self.quantize_Q_ud_8b(x)
                x = self.clamp_C_qa_8b(x)

            # save stuff
            self.output_shift        = nn.Parameter(torch.Tensor([ los ]), requires_grad=False) # functional, used in Maxim-friendly checkpoints

        elif(self.mode == 'eval'):
            #####################################################################################
            ## ASSUMPTION: parameters are already converted to HW before coming here.Check doc ##
            #####################################################################################

            # pre-compute stuff
            w = self.op.weight
            b = self.op.bias
            los  = self.output_shift
            s_o  = 2**(los)
            w_q = self.quantize_Q_u_wb(w);
            b_q = self.quantize_Q_u_wb(b); # yes, wb, not a typo, they need to be on the same scale

            # actual forward pass
            x = self.op_fcn(x, w_q, b_q, self.op.stride, self.op.padding) # convolution / linear
            x = x*s_o
            if(self.act is not None):
                x = self.act(x)
            if((self.wide) and (self.act is None)):
                x = self.quantize_Q_d_wide(x)
                x = self.clamp_C_hw_wide(x)
            else:
                x = self.quantize_Q_d_8b(x)
                x = self.clamp_C_hw_8b(x)

            # nothing to save, this was a hardware-emulated evaluation pass
        else:
            print('wrong quantization mode. should have been one of {fpt, qat, eval}. exiting')
            sys.exit()

        return x


class conv(shallow_base_layer):
    def __init__(
            self,
            C_in_channels      = None,    # number of input channels
            D_out_channels     = None,    # number of output channels
            K_kernel_dimension = None,    # square kernel dimension
            padding            = None,    # amount of pixels to pad on one side (other side is symmetrically padded too)
            pooling            = False,   # boolean flag for now, only maxpooling of 2-pools with stride 2
            batchnorm          = False,   # boolean flag for now, no trainable affine parameters 
            activation         = None,    # 'relu' is the only choice for now
            output_width_30b   = False    # boolean flag that chooses between "bigdata" (32b) and normal (8b) activation modes for MAX78000
    ):
        pooling_flag = pooling

        if(activation is None):
            activation_fcn = None;
        elif(activation == 'relu'):
            activation_fcn = nn.ReLU(inplace=True);
        else:
            print('wrong activation type in model. only {relu} is acceptable. exiting')
            sys.exit()

        ### Burak: only a module is enough for BN since we neither need to access internals in forward pass, nor train anything (affine=False)
        if(batchnorm):
        	batchnorm_mdl  = nn.BatchNorm2d(D_out_channels, eps=1e-05, momentum=0.05, affine=False)
        else:
        	batchnorm_mdl  = None;

        operation_mdl  = nn.Conv2d(C_in_channels, D_out_channels, kernel_size=K_kernel_dimension, stride=1, padding=padding, bias=True);
        operation_fcn  = nn.functional.conv2d

        super().__init__(
            pooling_flag       = pooling_flag,
            activation_module  = activation_fcn,
            operation_module   = operation_mdl,
            operation_fcnl     = operation_fcn,
            batchnorm_module   = batchnorm_mdl,
            output_width_30b   = output_width_30b
        )

def linear_functional(x, weight, bias, _stride, _padding):
    # dummy linear function that has same arguments as conv
    return nn.functional.linear(x, weight, bias)

class fullyconnected(shallow_base_layer):
    def __init__(
            self,
            in_features        = None,    # number of output features
            out_features       = None,    # number of output features
            pooling            = False,   # boolean flag for now, only maxpooling of 2-pools with stride 2
            batchnorm          = False,   # boolean flag for now, no trainable affine parameters 
            activation         = None,    # 'relu' is the only choice for now
            output_width_30b   = False    # boolean flag that chooses between "bigdata" (32b) and normal (8b) activation modes for MAX78000
    ):
 
        pooling_flag = pooling

        if(activation is None):
            activation_fcn = None;
        elif(activation == 'relu'):
            activation_fcn = nn.ReLU(inplace=True);
        else:
            print('wrong activation type in model. only {relu} is acceptable. exiting')
            sys.exit()

        ### Burak: only a module is enough for BN since we neither need to access internals in forward pass, nor train anything (affine=False)
        if(batchnorm):
        	batchnorm_mdl  = nn.BatchNorm2d(out_features, eps=1e-05, momentum=0.05, affine=False)
        else:
        	batchnorm_mdl  = None;

        operation_mdl  = nn.Linear(in_features, out_features, bias=True);
        operation_fcn  = linear_functional

        super().__init__(
            pooling_flag       = pooling_flag,
            activation_module  = activation_fcn,
            operation_module   = operation_mdl,
            operation_fcnl     = operation_fcn,
            batchnorm_module   = batchnorm_mdl,
            output_width_30b   = output_width_30b
        )
 
        # Define dummy arguments to make Linear and conv compatible in shallow_base_layer.
        # the name "op" here refers to op in super, i.e., in base_layer
        self.op.stride = None
        self.op.padding = None