Add missing metadata: library_name and pipeline_tag

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +92 -3
README.md CHANGED
@@ -1,3 +1,92 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: diffusers
4
+ pipeline_tag: text-to-image
5
+ ---
6
+
7
+ # URAE: ~~Your Free FLUX Pro Ultra~~
8
+
9
+ <img src='teaser.jpg' width='100%' />
10
+ <br>
11
+
12
+ <a href="https://arxiv.org/abs/2503.16322"><img src="https://img.shields.io/badge/arXiv-2503.16322-A42C25.svg" alt="arXiv"></a>
13
+ <a href="https://huggingface.co/Huage001/URAE"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
14
+ <a href="https://huggingface.co/spaces/Yuanshi/URAE"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a>
15
+ <a href="https://huggingface.co/spaces/Yuanshi/URAE_dev"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a>
16
+
17
+ > ***U*ltra-*R*esolution *A*daptation with *E*ase**
18
+ > <br>
19
+ > [Ruonan Yu*](https://scholar.google.com/citations?user=UHP95egAAAAJ&hl=en),
20
+ > [Songhua Liu*](http://121.37.94.87/),
21
+ > [Zhenxiong Tan](https://scholar.google.com/citations?user=HP9Be6UAAAAJ&hl=en),
22
+ > and
23
+ > [Xinchao Wang](https://sites.google.com/site/sitexinchaowang/)
24
+ > <br>
25
+ > [xML Lab](https://sites.google.com/view/xml-nus), National University of Singapore
26
+ > <br>
27
+
28
+ ## 🪶Features
29
+
30
+ * **Easy-to-Use High-Quality and High-Resolution Generation😊**: Ultra-Resolution Adaptation with Ease, or URAE in short, generates high-resolution images with FLUX, with minimal code modifications.
31
+ * **Easy Training🚀**: URAE tames light-weight adapters with a handful of synthetic data from [FLUX1.1 Pro Ultra](https://blackforestlabs.ai/ultra-home/).
32
+
33
+ ## 🔥News
34
+
35
+ **[2025/03/20]** We release models and codes for both training and inference of URAE.
36
+
37
+ ## Introduction
38
+
39
+ Text-to-image diffusion models have achieved remarkable progress in recent years. However, training models for high-resolution image generation remains challenging, particularly when training data and computational resources are limited. In this paper, we explore this practical problem from two key perspectives: data and parameter efficiency, and propose a set of key guidelines for ultra-resolution adaptation termed *URAE*. For data efficiency, we theoretically and empirically demonstrate that synthetic data generated by some teacher models can significantly promote training convergence. For parameter efficiency, we find that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable, offering substantial performance gains while maintaining efficiency. Additionally, for models leveraging guidance distillation, such as FLUX, we show that disabling classifier-free guidance, *i.e.*, setting the guidance scale to 1 during adaptation, is crucial for satisfactory performance. Extensive experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations, while setting new benchmarks for 4K-resolution generation.
40
+
41
+ ## Quick Start
42
+
43
+ * If you have not, install [PyTorch](https://pytorch.org/get-started/locally/), [diffusers](https://huggingface.co/docs/diffusers/index), [transformers](https://huggingface.co/docs/transformers/index), and [peft](https://huggingface.co/docs/peft/index).
44
+
45
+ * Clone this repo to your project directory:
46
+
47
+ ``` bash
48
+ git clone https://github.com/Huage001/URAE.git
49
+ cd URAE
50
+ ```
51
+
52
+ * **You only need minimal modifications!**
53
+
54
+ ```diff
55
+ import torch
56
+ - from diffusers import FluxPipeline
57
+ + from pipeline_flux import FluxPipeline
58
+ + from transformer_flux import FluxTransformer2DModel
59
+
60
+ bfl_repo = "black-forest-labs/FLUX.1-dev"
61
+ + transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=torch.bfloat16)
62
+ - pipe = FluxPipeline.from_pretrained(bfl_repo, torch_dtype=torch.bfloat16)
63
+ + pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=transformer, torch_dtype=torch.bfloat16)
64
+ pipe.enable_model_cpu_offload() #save some VRAM by offloading the model to CPU. Remove this if you have enough GPU power
65
+
66
+ + pipe.load_lora_weights("Huage001/URAE", weight_name="urae_2k_adapter.safetensors")
67
+
68
+ prompt = "An astronaut riding a green horse"
69
+ image = pipe(
70
+ prompt,
71
+ - height=1024,
72
+ - width=1024,
73
+ + height=2048,
74
+ + width=2048,
75
+ guidance_scale=3.5,
76
+ num_inference_steps=50,
77
+ max_sequence_length=512,
78
+ generator=torch.Generator("cpu").manual_seed(0)
79
+ ).images[0]
80
+ image.save("flux-urae.png")
81
+ ```
82
+ ⚠️ **FLUX requires at least 28GB of GPU memory to operate at a 2K resolution.** A 48GB GPU is recommended for the full functionalities of URAE, including both 2K and 4K. We are actively integrating model lightweighting strategies into URAE! If you have a good idea, feel free to submit a PR!
83
+
84
+
85
+ * Do not want to run the codes? No worry! Try the model on Huggingface Space!
86
+
87
+ * [URAE w. FLUX1.schnell](https://huggingface.co/spaces/Yuanshi/URAE) (Faster)
88
+ * [URAE w. FLUX1.dev](https://huggingface.co/spaces/Yuanshi/URAE_dev) (Higher Quality)
89
+
90
+ ## Installation
91
+
92
+ * Clone this repo to your project directory: