Uploaded model
- Developed by: HoangHa
- License: apache-2.0
- Convert to GGUF from model : HoangHa/Pensez-v0.1-e5
Pensez: Less Data, Better Reasoning – Rethinking French LLM
About | How to Run Locally | Models and Datasets | Benchmarks | Training Details
About
Pensez is a bilingual (French-English) reasoning model designed to maximize efficiency with significantly reduced training data. The model leverages a curated dataset focusing on daily reasoning tasks and scientific questions to enhance performance.
Key strategies for improved reasoning:
- Concise reasoning for simple tasks to prevent overthinking.
- Extended reasoning for complex domains like mathematics, coding, and science.
- Special tokens (
<think>...</think>
) to explicitly guide the model’s reasoning process.
These optimizations result in superior reasoning capabilities while maintaining robust general understanding compared to models like DeepSeek-R1-Distill-Qwen-7B.
Models and Datasets
Model Versions
Pensez is built upon Qwen 2.5 Instruct 7B and trained over five epochs.
Model | Backbone | Size | Download Link |
---|---|---|---|
Pensez-v0.1-e1 | Qwen2.5-7B-Instruct | 7B | 🤗 Pensez-v0.1-e1 |
Pensez-v0.1-e2 | Qwen2.5-7B-Instruct | 7B | 🤗 Pensez-v0.1-e2 |
Pensez-v0.1-e3 | Qwen2.5-7B-Instruct | 7B | 🤗 Pensez-v0.1-e3 |
Pensez-v0.1-e4 | Qwen2.5-7B-Instruct | 7B | 🤗 Pensez-v0.1-e4 |
Pensez-v0.1-e5 | Qwen2.5-7B-Instruct | 7B | 🤗 Pensez-v0.1-e5 |
Dataset
Pensez was trained on the hand-curated Pensez v0.1 dataset containing 2,000 samples (1,000 French, 1,000 English).
Dataset | Description | Size | Link |
---|---|---|---|
Pensez v0.1 | SFT Training Dataset | 2K samples | 🤗 Pensez v0.1 |
Benchmarks
Pensez was evaluated on French-specific benchmarks, demonstrating strong reasoning ability and improved task-specific performance:
Benchmark | Pensez-v0.1-e5 | DeepSeek-R1-Distill-Qwen-7B | Qwen2.5-7B-Instruct |
---|---|---|---|
Math-hard (fr) | 0.3458 | 0.3403 | 0.2253 |
MMLU (fr) | 0.5766 | 0.4961 | 0.6612 |
BoolQA (fr) | 0.9157 | 0.7079 | 0.9382 |
Trivia (en) | 0.4421 | 0.2711 | 0.5316 |
HellaSwag (en) | 0.5050 | 0.3540 | 0.5258 |
Key Observations:
- Pensez outperforms Qwen2.5-7B-Instruct in reasoning tasks.
- Comparable to DeepSeek-R1-Distill-Qwen-7B in reasoning while maintaining strong understanding.
- Reduced degradation in knowledge-based tasks.
Click for detailed benchmark results
Tasks | Pensez v0.1 e1 | Pensez v0.1 e2 | Pensez v0.1 e3 | Pensez v0.1 e4 | Pensez v0.1 e5 | Qwen 7B instruct | R1 distil |
---|---|---|---|---|---|---|---|
leaderboard_math_hard_fr | 0.0918 | 0.2547 | 0.2783 | 0.3035 | 0.3458 | 0.2253 | 0.3403 |
leaderboard_math_algebra_hard_fr | 0.1029 | 0.3914 | 0.3971 | 0.5114 | 0.5000 | 0.4229 | 0.4771 |
leaderboard_math_counting_and_prob_hard_fr | 0.0765 | 0.1378 | 0.1939 | 0.2041 | 0.2398 | 0.1224 | 0.2347 |
leaderboard_math_geometry_hard_fr | 0.0388 | 0.1019 | 0.1408 | 0.1359 | 0.1748 | 0.1019 | 0.2330 |
leaderboard_math_num_theory_hard_fr | 0.1198 | 0.2581 | 0.3502 | 0.3548 | 0.4332 | 0.3180 | 0.3963 |
leaderboard_math_prealgebra_hard_fr | 0.1681 | 0.4425 | 0.4690 | 0.4956 | 0.5841 | 0.3274 | 0.4867 |
leaderboard_math_precalculus_hard_fr | 0.0357 | 0.0714 | 0.1190 | 0.1190 | 0.1429 | 0.0595 | 0.2143 |
leaderboard_mmlu_fr | 0.3806 | 0.3329 | - | - | 0.5766 | 0.6612 | 0.4961 |
french_bench_arc_challenge | 0.5047 | 0.5021 | 0.4919 | 0.4859 | 0.4842 | 0.5518 | 0.3447 |
french_bench_boolqa | 0.9326 | 0.9326 | 0.9326 | 0.9270 | 0.9157 | 0.9382 | 0.7079 |
french_bench_fquadv2 | 0.4325 | 0.4400 | 0.4412 | 0.4375 | 0.4387 | 0.4800 | 0.2988 |
french_bench_hellaswag | 0.4970 | 0.5055 | 0.5092 | 0.5058 | 0.5050 | 0.5258 | 0.3540 |
french_bench_trivia | 0.4763 | 0.4763 | 0.4553 | 0.4395 | 0.4421 | 0.5316 | 0.2711 |
Run Locally
You can run Pensez using Hugging Face’s transformers
library:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_path = "HoangHa/Pensez-v0.1-e5"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map="auto"
)
# Example input
messages = [{"role": "user", "content": "Bonjour!"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to("cuda")
generated_ids = model.generate(input_ids, max_new_tokens=2500, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_space=True)
print(f"Réponse: {response}")
Training Details
Pensez was trained with:
- Packing Inputs Without Cross-Contamination Attention (Reference)
- Liger Kernel (Reference)
- DeepSpeed 3 (Reference)
- NEFTune Noise (Reference) for robustness.
Parameter | Value |
---|---|
Epochs | 5 |
Global Batch Size | 200 |
Learning Rate | 1e-5 |
Scheduler | Cosine |
Optimizer | AdamW |
Warmup Ratio | 0.05 |
Weight Decay | 0.01 |
Max Sequence Length | 16,384 |
More details: Training Config | Loss curves: Wandb
Citation
@misc{dao2025alphamazeenhancinglargelanguage,
title={Pensez: Less Data, Better Reasoning – Rethinking French LLM},
author={Ha Huy Hoang},
year={2025},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={},
}
Acknowledgement
- Downloads last month
- 40