BERTModified-finetuned-wikitext-full
This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set:
- Loss: 13.7327
- Precision: 0.1676
- Recall: 0.1676
- F1: 0.1676
- Accuracy: 0.1676
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
---|---|---|---|---|---|---|---|
22.0255 | 1.0 | 4253 | 0.0916 | 0.0916 | 20.2496 | 0.0916 | 0.0916 |
19.842 | 2.0 | 8506 | 0.1143 | 0.1143 | 19.0691 | 0.1143 | 0.1143 |
18.775 | 3.0 | 12759 | 0.1206 | 0.1206 | 18.5569 | 0.1206 | 0.1206 |
18.1046 | 4.0 | 17012 | 0.1251 | 0.1251 | 17.9528 | 0.1251 | 0.1251 |
17.683 | 5.0 | 21265 | 0.1251 | 0.1251 | 17.5635 | 0.1251 | 0.1251 |
17.5511 | 6.0 | 25518 | 0.1259 | 0.1259 | 16.8760 | 0.1259 | 0.1259 |
16.6864 | 7.0 | 29771 | 0.1335 | 0.1335 | 16.4200 | 0.1335 | 0.1335 |
16.0819 | 8.0 | 34024 | 0.1314 | 0.1314 | 16.0207 | 0.1314 | 0.1314 |
15.7008 | 9.0 | 38277 | 0.1378 | 0.1378 | 15.7501 | 0.1378 | 0.1378 |
15.4118 | 10.0 | 42530 | 0.1388 | 0.1388 | 15.5762 | 0.1388 | 0.1388 |
15.1596 | 11.0 | 46783 | 0.1449 | 0.1449 | 15.3382 | 0.1449 | 0.1449 |
14.9354 | 12.0 | 51036 | 0.1452 | 0.1452 | 15.2556 | 0.1452 | 0.1452 |
14.7266 | 13.0 | 55289 | 0.1464 | 0.1464 | 15.0213 | 0.1464 | 0.1464 |
14.5535 | 14.0 | 59542 | 0.1442 | 0.1442 | 14.9560 | 0.1442 | 0.1442 |
14.3903 | 15.0 | 63795 | 0.1538 | 0.1538 | 14.8365 | 0.1538 | 0.1538 |
14.2298 | 16.0 | 68048 | 0.1523 | 0.1523 | 14.8610 | 0.1523 | 0.1523 |
14.0871 | 17.0 | 72301 | 0.1536 | 0.1536 | 14.6533 | 0.1536 | 0.1536 |
13.9559 | 18.0 | 76554 | 0.1613 | 0.1613 | 14.6200 | 0.1613 | 0.1613 |
13.8601 | 19.0 | 80807 | 0.1624 | 0.1624 | 14.5995 | 0.1624 | 0.1624 |
13.7507 | 20.0 | 85060 | 0.1539 | 0.1539 | 14.4666 | 0.1539 | 0.1539 |
13.6544 | 21.0 | 89313 | 0.1575 | 0.1575 | 14.5517 | 0.1575 | 0.1575 |
13.5541 | 22.0 | 93566 | 0.1590 | 0.1590 | 14.5004 | 0.1590 | 0.1590 |
13.4733 | 23.0 | 97819 | 0.1648 | 0.1648 | 14.4233 | 0.1648 | 0.1648 |
13.3851 | 24.0 | 102072 | 0.1561 | 0.1561 | 14.3381 | 0.1561 | 0.1561 |
13.3094 | 25.0 | 106325 | 0.1630 | 0.1630 | 14.3428 | 0.1630 | 0.1630 |
13.2396 | 26.0 | 110578 | 0.1602 | 0.1602 | 14.3448 | 0.1602 | 0.1602 |
13.1548 | 27.0 | 114831 | 0.1603 | 0.1603 | 14.4059 | 0.1603 | 0.1603 |
13.0713 | 28.0 | 119084 | 0.1647 | 0.1647 | 14.2224 | 0.1647 | 0.1647 |
13.0317 | 29.0 | 123337 | 0.1619 | 0.1619 | 14.1962 | 0.1619 | 0.1619 |
12.9748 | 30.0 | 127590 | 0.1633 | 0.1633 | 14.2379 | 0.1633 | 0.1633 |
12.9308 | 31.0 | 131843 | 0.1648 | 0.1648 | 14.3591 | 0.1648 | 0.1648 |
12.8504 | 32.0 | 136096 | 0.1612 | 0.1612 | 14.1515 | 0.1612 | 0.1612 |
12.8249 | 33.0 | 140349 | 0.1625 | 0.1625 | 14.2247 | 0.1625 | 0.1625 |
12.76 | 34.0 | 144602 | 0.1588 | 0.1588 | 14.3861 | 0.1588 | 0.1588 |
12.7458 | 35.0 | 148855 | 0.1677 | 0.1677 | 14.1783 | 0.1677 | 0.1677 |
12.6804 | 36.0 | 153108 | 0.1639 | 0.1639 | 14.0968 | 0.1639 | 0.1639 |
12.6653 | 37.0 | 157361 | 0.1604 | 0.1604 | 13.9660 | 0.1604 | 0.1604 |
12.6191 | 38.0 | 161614 | 0.1680 | 0.1680 | 14.1075 | 0.1680 | 0.1680 |
12.5721 | 39.0 | 165867 | 0.1664 | 0.1664 | 13.9293 | 0.1664 | 0.1664 |
12.5647 | 40.0 | 170120 | 0.1693 | 0.1693 | 14.0956 | 0.1693 | 0.1693 |
12.5205 | 41.0 | 174373 | 0.1680 | 0.1680 | 14.1204 | 0.1680 | 0.1680 |
12.4846 | 42.0 | 178626 | 0.1655 | 0.1655 | 14.0288 | 0.1655 | 0.1655 |
12.4415 | 43.0 | 182879 | 0.1659 | 0.1659 | 14.1088 | 0.1659 | 0.1659 |
12.4219 | 44.0 | 187132 | 0.1661 | 0.1661 | 14.1751 | 0.1661 | 0.1661 |
12.4161 | 45.0 | 191385 | 0.1691 | 0.1691 | 14.0942 | 0.1691 | 0.1691 |
12.3982 | 46.0 | 195638 | 0.1607 | 0.1607 | 14.1141 | 0.1607 | 0.1607 |
12.3699 | 47.0 | 199891 | 0.1660 | 0.1660 | 14.0529 | 0.1660 | 0.1660 |
12.3591 | 48.0 | 204144 | 0.1693 | 0.1693 | 13.8278 | 0.1693 | 0.1693 |
12.3295 | 49.0 | 208397 | 0.1662 | 0.1662 | 14.2327 | 0.1662 | 0.1662 |
12.3284 | 50.0 | 212650 | 0.1685 | 0.1685 | 14.1071 | 0.1685 | 0.1685 |
12.5499 | 51.0 | 216903 | 0.1703 | 0.1703 | 14.0200 | 0.1703 | 0.1703 |
12.5456 | 52.0 | 221156 | 0.1679 | 0.1679 | 14.1215 | 0.1679 | 0.1679 |
12.5275 | 53.0 | 225409 | 0.1645 | 0.1645 | 14.0103 | 0.1645 | 0.1645 |
12.4778 | 54.0 | 229662 | 0.1669 | 0.1669 | 14.0708 | 0.1669 | 0.1669 |
12.4607 | 55.0 | 233915 | 0.1681 | 0.1681 | 13.9272 | 0.1681 | 0.1681 |
12.3859 | 56.0 | 238168 | 0.1653 | 0.1653 | 14.0765 | 0.1653 | 0.1653 |
12.3655 | 57.0 | 242421 | 0.1667 | 0.1667 | 13.9649 | 0.1667 | 0.1667 |
12.3407 | 58.0 | 246674 | 0.1671 | 0.1671 | 13.9990 | 0.1671 | 0.1671 |
12.3088 | 59.0 | 250927 | 0.1656 | 0.1656 | 14.1460 | 0.1656 | 0.1656 |
12.2647 | 60.0 | 255180 | 0.1634 | 0.1634 | 14.0701 | 0.1634 | 0.1634 |
12.2248 | 61.0 | 259433 | 0.1647 | 0.1647 | 14.1750 | 0.1647 | 0.1647 |
12.1574 | 62.0 | 263686 | 0.1664 | 0.1664 | 14.0358 | 0.1664 | 0.1664 |
12.1868 | 63.0 | 267939 | 0.1655 | 0.1655 | 14.1684 | 0.1655 | 0.1655 |
12.1522 | 64.0 | 272192 | 0.1629 | 0.1629 | 13.8736 | 0.1629 | 0.1629 |
12.1013 | 65.0 | 276445 | 0.1679 | 0.1679 | 14.0409 | 0.1679 | 0.1679 |
12.0726 | 66.0 | 280698 | 0.1664 | 0.1664 | 14.1370 | 0.1664 | 0.1664 |
12.0498 | 67.0 | 284951 | 0.1636 | 0.1636 | 14.3254 | 0.1636 | 0.1636 |
12.016 | 68.0 | 289204 | 0.1656 | 0.1656 | 13.9675 | 0.1656 | 0.1656 |
12.0105 | 69.0 | 293457 | 0.1683 | 0.1683 | 13.9938 | 0.1683 | 0.1683 |
11.9617 | 70.0 | 297710 | 0.1691 | 0.1691 | 13.8582 | 0.1691 | 0.1691 |
11.9515 | 71.0 | 301963 | 0.1633 | 0.1633 | 14.1426 | 0.1633 | 0.1633 |
11.9394 | 72.0 | 306216 | 0.1666 | 0.1666 | 14.1693 | 0.1666 | 0.1666 |
11.8926 | 73.0 | 310469 | 0.1686 | 0.1686 | 13.8987 | 0.1686 | 0.1686 |
11.8816 | 74.0 | 314722 | 0.1703 | 0.1703 | 13.8562 | 0.1703 | 0.1703 |
11.8537 | 75.0 | 318975 | 0.1664 | 0.1664 | 13.8956 | 0.1664 | 0.1664 |
11.8447 | 76.0 | 323228 | 0.1672 | 0.1672 | 13.9239 | 0.1672 | 0.1672 |
11.8166 | 77.0 | 327481 | 0.1712 | 0.1712 | 13.9084 | 0.1712 | 0.1712 |
11.7861 | 78.0 | 331734 | 0.1721 | 0.1721 | 13.8685 | 0.1721 | 0.1721 |
11.7681 | 79.0 | 335987 | 0.1679 | 0.1679 | 13.8594 | 0.1679 | 0.1679 |
11.7506 | 80.0 | 340240 | 0.1655 | 0.1655 | 13.8944 | 0.1655 | 0.1655 |
11.7237 | 81.0 | 344493 | 0.1678 | 0.1678 | 13.8826 | 0.1678 | 0.1678 |
11.7115 | 82.0 | 348746 | 0.1650 | 0.1650 | 13.7157 | 0.1650 | 0.1650 |
11.6859 | 83.0 | 352999 | 0.1713 | 0.1713 | 14.0802 | 0.1713 | 0.1713 |
11.6991 | 84.0 | 357252 | 0.1722 | 0.1722 | 13.8076 | 0.1722 | 0.1722 |
11.6674 | 85.0 | 361505 | 0.1712 | 0.1712 | 13.9484 | 0.1712 | 0.1712 |
11.6401 | 86.0 | 365758 | 0.1718 | 0.1718 | 13.8485 | 0.1718 | 0.1718 |
11.6477 | 87.0 | 370011 | 0.1701 | 0.1701 | 13.7326 | 0.1701 | 0.1701 |
11.6111 | 88.0 | 374264 | 0.1695 | 0.1695 | 14.0255 | 0.1695 | 0.1695 |
11.6031 | 89.0 | 378517 | 0.1704 | 0.1704 | 13.7595 | 0.1704 | 0.1704 |
11.5898 | 90.0 | 382770 | 0.1677 | 0.1677 | 14.0630 | 0.1677 | 0.1677 |
11.5808 | 91.0 | 387023 | 0.1743 | 0.1743 | 13.9293 | 0.1743 | 0.1743 |
11.5664 | 92.0 | 391276 | 0.1712 | 0.1712 | 13.9230 | 0.1712 | 0.1712 |
11.5692 | 93.0 | 395529 | 0.1694 | 0.1694 | 13.9230 | 0.1694 | 0.1694 |
11.5578 | 94.0 | 399782 | 0.1713 | 0.1713 | 13.9748 | 0.1713 | 0.1713 |
11.5067 | 95.0 | 404035 | 0.1770 | 0.1770 | 13.8655 | 0.1770 | 0.1770 |
11.5176 | 96.0 | 408288 | 0.1740 | 0.1740 | 14.0284 | 0.1740 | 0.1740 |
11.5408 | 97.0 | 412541 | 0.1718 | 0.1718 | 13.8855 | 0.1718 | 0.1718 |
11.4876 | 98.0 | 416794 | 0.1746 | 0.1746 | 13.6721 | 0.1746 | 0.1746 |
11.5056 | 99.0 | 421047 | 0.1734 | 0.1734 | 13.8167 | 0.1734 | 0.1734 |
11.5185 | 100.0 | 425300 | 0.1716 | 0.1716 | 13.8581 | 0.1716 | 0.1716 |
11.5619 | 101.0 | 429553 | 13.9219 | 0.1687 | 0.1687 | 0.1687 | 0.1687 |
11.5759 | 102.0 | 433806 | 14.1460 | 0.1663 | 0.1663 | 0.1663 | 0.1663 |
11.5661 | 103.0 | 438059 | 13.8979 | 0.1724 | 0.1724 | 0.1724 | 0.1724 |
11.5127 | 104.0 | 442312 | 13.7580 | 0.1727 | 0.1727 | 0.1727 | 0.1727 |
11.5476 | 105.0 | 446565 | 14.1029 | 0.1675 | 0.1675 | 0.1675 | 0.1675 |
11.5309 | 106.0 | 450818 | 14.0572 | 0.1704 | 0.1704 | 0.1704 | 0.1704 |
11.507 | 107.0 | 455071 | 13.8523 | 0.1734 | 0.1734 | 0.1734 | 0.1734 |
11.5251 | 108.0 | 459324 | 13.9018 | 0.1701 | 0.1701 | 0.1701 | 0.1701 |
11.4931 | 109.0 | 463577 | 13.7898 | 0.1786 | 0.1786 | 0.1786 | 0.1786 |
11.5107 | 110.0 | 467830 | 13.8426 | 0.1764 | 0.1764 | 0.1764 | 0.1764 |
11.4665 | 111.0 | 472083 | 13.9605 | 0.1705 | 0.1705 | 0.1705 | 0.1705 |
11.4901 | 112.0 | 476336 | 13.8094 | 0.1743 | 0.1743 | 0.1743 | 0.1743 |
11.4702 | 113.0 | 480589 | 13.9445 | 0.1664 | 0.1664 | 0.1664 | 0.1664 |
11.4617 | 114.0 | 484842 | 13.8887 | 0.1707 | 0.1707 | 0.1707 | 0.1707 |
11.4458 | 115.0 | 489095 | 13.8951 | 0.1701 | 0.1701 | 0.1701 | 0.1701 |
11.4361 | 116.0 | 493348 | 13.7645 | 0.1705 | 0.1705 | 0.1705 | 0.1705 |
11.4176 | 117.0 | 497601 | 13.7752 | 0.1734 | 0.1734 | 0.1734 | 0.1734 |
11.4359 | 118.0 | 501854 | 13.9083 | 0.1714 | 0.1714 | 0.1714 | 0.1714 |
11.409 | 119.0 | 506107 | 13.9772 | 0.1668 | 0.1668 | 0.1668 | 0.1668 |
11.4238 | 120.0 | 510360 | 13.7327 | 0.1676 | 0.1676 | 0.1676 | 0.1676 |
Framework versions
- Transformers 4.24.0
- Pytorch 2.0.0
- Datasets 2.6.1
- Tokenizers 0.13.1