File size: 11,387 Bytes
1f9caee
 
 
 
 
 
 
 
ced832c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f9caee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced832c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f9caee
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import gradio as gr
from pytube import YouTube
from pydub import AudioSegment
import numpy as np
import faiss
from sklearn.cluster import MiniBatchKMeans
import traceback
from random import shuffle
import json
import pathlib
from subprocess import Popen, PIPE, STDOUT

# Define the function for training
def click_train(
    exp_dir1,
    sr2,
    if_f0_3,
    spk_id5,
    save_epoch10,
    total_epoch11,
    batch_size12,
    if_save_latest13,
    pretrained_G14,
    pretrained_D15,
    gpus16,
    if_cache_gpu17,
    if_save_every_weights18,
    version19,
):
    now_dir = os.getcwd()
    exp_dir = f"{now_dir}/logs/{exp_dir1}"
    os.makedirs(exp_dir, exist_ok=True)
    gt_wavs_dir = f"{exp_dir}/0_gt_wavs"
    feature_dir = (
        f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768"
    )
    
    if if_f0_3:
        f0_dir = f"{exp_dir}/2a_f0"
        f0nsf_dir = f"{exp_dir}/2b-f0nsf"
        names = (
            set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
            & set([name.split(".")[0] for name in os.listdir(feature_dir)])
            & set([name.split(".")[0] for name in os.listdir(f0_dir)])
            & set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
        )
    else:
        names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
            [name.split(".")[0] for name in os.listdir(feature_dir)]
        )
    
    opt = []
    for name in names:
        if if_f0_3:
            opt.append(
                f"{gt_wavs_dir.replace('\\', '\\\\')}/{name}.wav|{feature_dir.replace('\\', '\\\\')}/{name}.npy|{f0_dir.replace('\\', '\\\\')}/{name}.wav.npy|{f0nsf_dir.replace('\\', '\\\\')}/{name}.wav.npy|{spk_id5}"
            )
        else:
            opt.append(
                f"{gt_wavs_dir.replace('\\', '\\\\')}/{name}.wav|{feature_dir.replace('\\', '\\\\')}/{name}.npy|{spk_id5}"
            )
    
    fea_dim = 256 if version19 == "v1" else 768
    if if_f0_3:
        for _ in range(2):
            opt.append(
                f"{now_dir}/logs/mute/0_gt_wavs/mute{sr2}.wav|{now_dir}/logs/mute/3_feature{fea_dim}/mute.npy|{now_dir}/logs/mute/2a_f0/mute.wav.npy|{now_dir}/logs/mute/2b-f0nsf/mute.wav.npy|{spk_id5}"
            )
    else:
        for _ in range(2):
            opt.append(
                f"{now_dir}/logs/mute/0_gt_wavs/mute{sr2}.wav|{now_dir}/logs/mute/3_feature{fea_dim}/mute.npy|{spk_id5}"
            )
    
    shuffle(opt)
    with open(f"{exp_dir}/filelist.txt", "w") as f:
        f.write("\n".join(opt))

    print("Write filelist done")
    print("Use gpus:", str(gpus16))
    if pretrained_G14 == "":
        print("No pretrained Generator")
    if pretrained_D15 == "":
        print("No pretrained Discriminator")
    
    if version19 == "v1" or sr2 == "40k":
        config_path = f"configs/v1/{sr2}.json"
    else:
        config_path = f"configs/v2/{sr2}.json"
    
    config_save_path = os.path.join(exp_dir, "config.json")
    if not pathlib.Path(config_save_path).exists():
        with open(config_save_path, "w", encoding="utf-8") as f:
            with open(config_path, "r") as config_file:
                config_data = json.load(config_file)
                json.dump(
                    config_data,
                    f,
                    ensure_ascii=False,
                    indent=4,
                    sort_keys=True,
                )
            f.write("\n")

    cmd = (
        f'python infer/modules/train/train.py -e "{exp_dir1}" -sr {sr2} -f0 {1 if if_f0_3 else 0} -bs {batch_size12} -g {gpus16} -te {total_epoch11} -se {save_epoch10} {"-pg " + pretrained_G14 if pretrained_G14 != "" else ""} {"-pd " + pretrained_D15 if pretrained_D15 != "" else ""} -l {1 if if_save_latest13 else 0} -c {1 if if_cache_gpu17 else 0} -sw {1 if if_save_every_weights18 else 0} -v {version19}'
    )

    p = Popen(cmd, shell=True, cwd=now_dir, stdout=PIPE, stderr=STDOUT, bufsize=1, universal_newlines=True)
    
    for line in p.stdout:
        print(line.strip())
    
    p.wait()
    return "After the training is completed, you can view the console training log or train.log under the experiment folder"



def calculate_audio_duration(file_path):
    duration_seconds = len(AudioSegment.from_file(file_path)) / 1000.0
    return duration_seconds

def youtube_to_wav(url, dataset_folder):
    try:
        yt = YouTube(url).streams.get_audio_only().download(output_path=dataset_folder)
        mp4_path = os.path.join(dataset_folder, 'audio.mp4')
        wav_path = os.path.join(dataset_folder, 'audio.wav')
        os.rename(yt, mp4_path)
        os.system(f'ffmpeg -i {mp4_path} -acodec pcm_s16le -ar 44100 {wav_path}')
        os.remove(mp4_path)
        return f'Audio downloaded and converted to WAV: {wav_path}'
    except Exception as e:
        return f"Error: {e}"

def create_training_files(model_name, dataset_folder, youtube_link):
    if youtube_link:
        youtube_to_wav(youtube_link, dataset_folder)

    if not os.listdir(dataset_folder):
        return "Your dataset folder is empty."

    os.makedirs(f'./logs/{model_name}', exist_ok=True)
    
    os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1')
    
    with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
        if 'end preprocess' in f.read():
            return "Preprocessing Success"
        else:
            return "Error preprocessing data... Make sure your dataset folder is correct."

def extract_features(model_name, f0method):
    os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True' if f0method == "rmvpe_gpu" else 
              f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}')
    os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True')
    
    with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
        if 'all-feature-done' in f.read():
            return "Feature Extraction Success"
        else:
            return "Error in feature extraction... Make sure your data was preprocessed."

def train_index(exp_dir1, version19):
    exp_dir = f"logs/{exp_dir1}"
    os.makedirs(exp_dir, exist_ok=True)
    feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768"
    if not os.path.exists(feature_dir):
        return "Please perform feature extraction first!"

    listdir_res = list(os.listdir(feature_dir))
    if len(listdir_res) == 0:
        return "Please perform feature extraction first!"

    infos = []
    npys = []
    for name in sorted(listdir_res):
        phone = np.load(f"{feature_dir}/{name}")
        npys.append(phone)
    big_npy = np.concatenate(npys, 0)
    big_npy_idx = np.arange(big_npy.shape[0])
    np.random.shuffle(big_npy_idx)
    big_npy = big_npy[big_npy_idx]
    if big_npy.shape[0] > 2e5:
        infos.append(f"Trying k-means with {big_npy.shape[0]} to 10k centers.")
        try:
            big_npy = MiniBatchKMeans(
                n_clusters=10000,
                verbose=True,
                batch_size=256,
                compute_labels=False,
                init="random",
            ).fit(big_npy).cluster_centers_
        except:
            info = traceback.format_exc()
            infos.append(info)
            return "\n".join(infos)

    np.save(f"{exp_dir}/total_fea.npy", big_npy)
    n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
    infos.append(f"{big_npy.shape},{n_ivf}")

    index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat")
    infos.append("Training index")
    index_ivf = faiss.extract_index_ivf(index)
    index_ivf.nprobe = 1
    index.train(big_npy)
    faiss.write_index(index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")

    infos.append("Adding to index")
    batch_size_add = 8192
    for i in range(0, big_npy.shape[0], batch_size_add):
        index.add(big_npy[i: i + batch_size_add])
    faiss.write_index(index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")

    infos.append(f"Successfully built index: added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
    return "\n".join(infos)

with gr.Blocks() as demo:
    with gr.Tab("Training"):
        with gr.Tab("CREATE TRANING FILES - This will process the data, extract the features and create your index file for you!"):
            with gr.Row():
                model_name = gr.Textbox(label="Model Name", value="My-Voice")
                dataset_folder = gr.Textbox(label="Dataset Folder", value="/content/dataset")
            youtube_link = gr.Textbox(label="YouTube Link (optional)")
            with gr.Row():
                start_button = gr.Button("Create Training Files")
                f0method = gr.Dropdown(["pm", "harvest", "rmvpe", "rmvpe_gpu"], label="F0 Method", value="rmvpe_gpu")
            extract_button = gr.Button("Extract Features")
            train_button = gr.Button("Train Index")

        output = gr.Textbox(label="Output")

        start_button.click(create_training_files, inputs=[model_name, dataset_folder, youtube_link], outputs=output)
        extract_button.click(extract_features, inputs=[model_name, f0method], outputs=output)
        train_button.click(train_index, inputs=[model_name, "v2"], outputs=output)
        with gr.Tab("train"):
            exp_dir1 = gr.Textbox(label="Experiment Directory", value="mymodel")
            sr2 = gr.Dropdown(choices=["32k", "40k", "48k"], label="Sample Rate", value="32k")
            if_f0_3 = gr.Checkbox(label="Use F0", value=True)
            spk_id5 = gr.Number(label="Speaker ID", value=0)
            save_epoch10 = gr.Slider(label="Save Frequency", minimum=5, maximum=50, step=5, value=25)
            total_epoch11 = gr.Slider(label="Total Epochs", minimum=10, maximum=2000, step=10, value=500)
            batch_size12 = gr.Slider(label="Batch Size", minimum=1, maximum=20, step=1, value=8)
            if_save_latest13 = gr.Checkbox(label="Save Latest", value=True)
            pretrained_G14 = gr.Textbox(label="Pretrained Generator File", value="/content/pre/assets/pretrained_v2/f0Ov2Super32kG.pth")
            pretrained_D15 = gr.Textbox(label="Pretrained Discriminator File", value="/content/pre/assets/pretrained_v2/f0Ov2Super32kD.pth")
            gpus16 = gr.Number(label="GPUs", value=0)
            if_cache_gpu17 = gr.Checkbox(label="Cache GPU", value=False)
            if_save_every_weights18 = gr.Checkbox(label="Save Every Weights", value=True)
            version19 = gr.Textbox(label="Version", value="v2")
            training_log = gr.Textbox(label="Training Log", interactive=False)
            train_button = gr.Button("Start Training")
            
            train_button.click(
                fn=click_train,
                inputs=[
                    exp_dir1, sr2, if_f0_3, spk_id5, save_epoch10, total_epoch11, batch_size12,
                    if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17,
                    if_save_every_weights18, version19
                ],
                outputs=training_log
            )



demo.launch()






# beta state ......