File size: 11,387 Bytes
1f9caee ced832c 1f9caee ced832c 1f9caee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import os
import gradio as gr
from pytube import YouTube
from pydub import AudioSegment
import numpy as np
import faiss
from sklearn.cluster import MiniBatchKMeans
import traceback
from random import shuffle
import json
import pathlib
from subprocess import Popen, PIPE, STDOUT
# Define the function for training
def click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
):
now_dir = os.getcwd()
exp_dir = f"{now_dir}/logs/{exp_dir1}"
os.makedirs(exp_dir, exist_ok=True)
gt_wavs_dir = f"{exp_dir}/0_gt_wavs"
feature_dir = (
f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768"
)
if if_f0_3:
f0_dir = f"{exp_dir}/2a_f0"
f0nsf_dir = f"{exp_dir}/2b-f0nsf"
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(feature_dir)]
)
opt = []
for name in names:
if if_f0_3:
opt.append(
f"{gt_wavs_dir.replace('\\', '\\\\')}/{name}.wav|{feature_dir.replace('\\', '\\\\')}/{name}.npy|{f0_dir.replace('\\', '\\\\')}/{name}.wav.npy|{f0nsf_dir.replace('\\', '\\\\')}/{name}.wav.npy|{spk_id5}"
)
else:
opt.append(
f"{gt_wavs_dir.replace('\\', '\\\\')}/{name}.wav|{feature_dir.replace('\\', '\\\\')}/{name}.npy|{spk_id5}"
)
fea_dim = 256 if version19 == "v1" else 768
if if_f0_3:
for _ in range(2):
opt.append(
f"{now_dir}/logs/mute/0_gt_wavs/mute{sr2}.wav|{now_dir}/logs/mute/3_feature{fea_dim}/mute.npy|{now_dir}/logs/mute/2a_f0/mute.wav.npy|{now_dir}/logs/mute/2b-f0nsf/mute.wav.npy|{spk_id5}"
)
else:
for _ in range(2):
opt.append(
f"{now_dir}/logs/mute/0_gt_wavs/mute{sr2}.wav|{now_dir}/logs/mute/3_feature{fea_dim}/mute.npy|{spk_id5}"
)
shuffle(opt)
with open(f"{exp_dir}/filelist.txt", "w") as f:
f.write("\n".join(opt))
print("Write filelist done")
print("Use gpus:", str(gpus16))
if pretrained_G14 == "":
print("No pretrained Generator")
if pretrained_D15 == "":
print("No pretrained Discriminator")
if version19 == "v1" or sr2 == "40k":
config_path = f"configs/v1/{sr2}.json"
else:
config_path = f"configs/v2/{sr2}.json"
config_save_path = os.path.join(exp_dir, "config.json")
if not pathlib.Path(config_save_path).exists():
with open(config_save_path, "w", encoding="utf-8") as f:
with open(config_path, "r") as config_file:
config_data = json.load(config_file)
json.dump(
config_data,
f,
ensure_ascii=False,
indent=4,
sort_keys=True,
)
f.write("\n")
cmd = (
f'python infer/modules/train/train.py -e "{exp_dir1}" -sr {sr2} -f0 {1 if if_f0_3 else 0} -bs {batch_size12} -g {gpus16} -te {total_epoch11} -se {save_epoch10} {"-pg " + pretrained_G14 if pretrained_G14 != "" else ""} {"-pd " + pretrained_D15 if pretrained_D15 != "" else ""} -l {1 if if_save_latest13 else 0} -c {1 if if_cache_gpu17 else 0} -sw {1 if if_save_every_weights18 else 0} -v {version19}'
)
p = Popen(cmd, shell=True, cwd=now_dir, stdout=PIPE, stderr=STDOUT, bufsize=1, universal_newlines=True)
for line in p.stdout:
print(line.strip())
p.wait()
return "After the training is completed, you can view the console training log or train.log under the experiment folder"
def calculate_audio_duration(file_path):
duration_seconds = len(AudioSegment.from_file(file_path)) / 1000.0
return duration_seconds
def youtube_to_wav(url, dataset_folder):
try:
yt = YouTube(url).streams.get_audio_only().download(output_path=dataset_folder)
mp4_path = os.path.join(dataset_folder, 'audio.mp4')
wav_path = os.path.join(dataset_folder, 'audio.wav')
os.rename(yt, mp4_path)
os.system(f'ffmpeg -i {mp4_path} -acodec pcm_s16le -ar 44100 {wav_path}')
os.remove(mp4_path)
return f'Audio downloaded and converted to WAV: {wav_path}'
except Exception as e:
return f"Error: {e}"
def create_training_files(model_name, dataset_folder, youtube_link):
if youtube_link:
youtube_to_wav(youtube_link, dataset_folder)
if not os.listdir(dataset_folder):
return "Your dataset folder is empty."
os.makedirs(f'./logs/{model_name}', exist_ok=True)
os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1')
with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
if 'end preprocess' in f.read():
return "Preprocessing Success"
else:
return "Error preprocessing data... Make sure your dataset folder is correct."
def extract_features(model_name, f0method):
os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True' if f0method == "rmvpe_gpu" else
f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}')
os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True')
with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
if 'all-feature-done' in f.read():
return "Feature Extraction Success"
else:
return "Error in feature extraction... Make sure your data was preprocessed."
def train_index(exp_dir1, version19):
exp_dir = f"logs/{exp_dir1}"
os.makedirs(exp_dir, exist_ok=True)
feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768"
if not os.path.exists(feature_dir):
return "Please perform feature extraction first!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "Please perform feature extraction first!"
infos = []
npys = []
for name in sorted(listdir_res):
phone = np.load(f"{feature_dir}/{name}")
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
if big_npy.shape[0] > 2e5:
infos.append(f"Trying k-means with {big_npy.shape[0]} to 10k centers.")
try:
big_npy = MiniBatchKMeans(
n_clusters=10000,
verbose=True,
batch_size=256,
compute_labels=False,
init="random",
).fit(big_npy).cluster_centers_
except:
info = traceback.format_exc()
infos.append(info)
return "\n".join(infos)
np.save(f"{exp_dir}/total_fea.npy", big_npy)
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
infos.append(f"{big_npy.shape},{n_ivf}")
index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat")
infos.append("Training index")
index_ivf = faiss.extract_index_ivf(index)
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
infos.append("Adding to index")
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i: i + batch_size_add])
faiss.write_index(index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
infos.append(f"Successfully built index: added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
return "\n".join(infos)
with gr.Blocks() as demo:
with gr.Tab("Training"):
with gr.Tab("CREATE TRANING FILES - This will process the data, extract the features and create your index file for you!"):
with gr.Row():
model_name = gr.Textbox(label="Model Name", value="My-Voice")
dataset_folder = gr.Textbox(label="Dataset Folder", value="/content/dataset")
youtube_link = gr.Textbox(label="YouTube Link (optional)")
with gr.Row():
start_button = gr.Button("Create Training Files")
f0method = gr.Dropdown(["pm", "harvest", "rmvpe", "rmvpe_gpu"], label="F0 Method", value="rmvpe_gpu")
extract_button = gr.Button("Extract Features")
train_button = gr.Button("Train Index")
output = gr.Textbox(label="Output")
start_button.click(create_training_files, inputs=[model_name, dataset_folder, youtube_link], outputs=output)
extract_button.click(extract_features, inputs=[model_name, f0method], outputs=output)
train_button.click(train_index, inputs=[model_name, "v2"], outputs=output)
with gr.Tab("train"):
exp_dir1 = gr.Textbox(label="Experiment Directory", value="mymodel")
sr2 = gr.Dropdown(choices=["32k", "40k", "48k"], label="Sample Rate", value="32k")
if_f0_3 = gr.Checkbox(label="Use F0", value=True)
spk_id5 = gr.Number(label="Speaker ID", value=0)
save_epoch10 = gr.Slider(label="Save Frequency", minimum=5, maximum=50, step=5, value=25)
total_epoch11 = gr.Slider(label="Total Epochs", minimum=10, maximum=2000, step=10, value=500)
batch_size12 = gr.Slider(label="Batch Size", minimum=1, maximum=20, step=1, value=8)
if_save_latest13 = gr.Checkbox(label="Save Latest", value=True)
pretrained_G14 = gr.Textbox(label="Pretrained Generator File", value="/content/pre/assets/pretrained_v2/f0Ov2Super32kG.pth")
pretrained_D15 = gr.Textbox(label="Pretrained Discriminator File", value="/content/pre/assets/pretrained_v2/f0Ov2Super32kD.pth")
gpus16 = gr.Number(label="GPUs", value=0)
if_cache_gpu17 = gr.Checkbox(label="Cache GPU", value=False)
if_save_every_weights18 = gr.Checkbox(label="Save Every Weights", value=True)
version19 = gr.Textbox(label="Version", value="v2")
training_log = gr.Textbox(label="Training Log", interactive=False)
train_button = gr.Button("Start Training")
train_button.click(
fn=click_train,
inputs=[
exp_dir1, sr2, if_f0_3, spk_id5, save_epoch10, total_epoch11, batch_size12,
if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17,
if_save_every_weights18, version19
],
outputs=training_log
)
demo.launch()
# beta state ......
|