Create hevrvc.py
Browse files
hevrvc.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from pytube import YouTube
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import numpy as np
|
6 |
+
import faiss
|
7 |
+
from sklearn.cluster import MiniBatchKMeans
|
8 |
+
import traceback
|
9 |
+
|
10 |
+
def calculate_audio_duration(file_path):
|
11 |
+
duration_seconds = len(AudioSegment.from_file(file_path)) / 1000.0
|
12 |
+
return duration_seconds
|
13 |
+
|
14 |
+
def youtube_to_wav(url, dataset_folder):
|
15 |
+
try:
|
16 |
+
yt = YouTube(url).streams.get_audio_only().download(output_path=dataset_folder)
|
17 |
+
mp4_path = os.path.join(dataset_folder, 'audio.mp4')
|
18 |
+
wav_path = os.path.join(dataset_folder, 'audio.wav')
|
19 |
+
os.rename(yt, mp4_path)
|
20 |
+
os.system(f'ffmpeg -i {mp4_path} -acodec pcm_s16le -ar 44100 {wav_path}')
|
21 |
+
os.remove(mp4_path)
|
22 |
+
return f'Audio downloaded and converted to WAV: {wav_path}'
|
23 |
+
except Exception as e:
|
24 |
+
return f"Error: {e}"
|
25 |
+
|
26 |
+
def create_training_files(model_name, dataset_folder, youtube_link):
|
27 |
+
if youtube_link:
|
28 |
+
youtube_to_wav(youtube_link, dataset_folder)
|
29 |
+
|
30 |
+
if not os.listdir(dataset_folder):
|
31 |
+
return "Your dataset folder is empty."
|
32 |
+
|
33 |
+
os.makedirs(f'./logs/{model_name}', exist_ok=True)
|
34 |
+
|
35 |
+
os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1')
|
36 |
+
|
37 |
+
with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
|
38 |
+
if 'end preprocess' in f.read():
|
39 |
+
return "Preprocessing Success"
|
40 |
+
else:
|
41 |
+
return "Error preprocessing data... Make sure your dataset folder is correct."
|
42 |
+
|
43 |
+
def extract_features(model_name, f0method):
|
44 |
+
os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True' if f0method == "rmvpe_gpu" else
|
45 |
+
f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}')
|
46 |
+
os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True')
|
47 |
+
|
48 |
+
with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
|
49 |
+
if 'all-feature-done' in f.read():
|
50 |
+
return "Feature Extraction Success"
|
51 |
+
else:
|
52 |
+
return "Error in feature extraction... Make sure your data was preprocessed."
|
53 |
+
|
54 |
+
def train_index(exp_dir1, version19):
|
55 |
+
exp_dir = f"logs/{exp_dir1}"
|
56 |
+
os.makedirs(exp_dir, exist_ok=True)
|
57 |
+
feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768"
|
58 |
+
if not os.path.exists(feature_dir):
|
59 |
+
return "Please perform feature extraction first!"
|
60 |
+
|
61 |
+
listdir_res = list(os.listdir(feature_dir))
|
62 |
+
if len(listdir_res) == 0:
|
63 |
+
return "Please perform feature extraction first!"
|
64 |
+
|
65 |
+
infos = []
|
66 |
+
npys = []
|
67 |
+
for name in sorted(listdir_res):
|
68 |
+
phone = np.load(f"{feature_dir}/{name}")
|
69 |
+
npys.append(phone)
|
70 |
+
big_npy = np.concatenate(npys, 0)
|
71 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
72 |
+
np.random.shuffle(big_npy_idx)
|
73 |
+
big_npy = big_npy[big_npy_idx]
|
74 |
+
if big_npy.shape[0] > 2e5:
|
75 |
+
infos.append(f"Trying k-means with {big_npy.shape[0]} to 10k centers.")
|
76 |
+
try:
|
77 |
+
big_npy = MiniBatchKMeans(
|
78 |
+
n_clusters=10000,
|
79 |
+
verbose=True,
|
80 |
+
batch_size=256,
|
81 |
+
compute_labels=False,
|
82 |
+
init="random",
|
83 |
+
).fit(big_npy).cluster_centers_
|
84 |
+
except:
|
85 |
+
info = traceback.format_exc()
|
86 |
+
infos.append(info)
|
87 |
+
return "\n".join(infos)
|
88 |
+
|
89 |
+
np.save(f"{exp_dir}/total_fea.npy", big_npy)
|
90 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
91 |
+
infos.append(f"{big_npy.shape},{n_ivf}")
|
92 |
+
|
93 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat")
|
94 |
+
infos.append("Training index")
|
95 |
+
index_ivf = faiss.extract_index_ivf(index)
|
96 |
+
index_ivf.nprobe = 1
|
97 |
+
index.train(big_npy)
|
98 |
+
faiss.write_index(index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
|
99 |
+
|
100 |
+
infos.append("Adding to index")
|
101 |
+
batch_size_add = 8192
|
102 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
103 |
+
index.add(big_npy[i: i + batch_size_add])
|
104 |
+
faiss.write_index(index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
|
105 |
+
|
106 |
+
infos.append(f"Successfully built index: added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
|
107 |
+
return "\n".join(infos)
|
108 |
+
|
109 |
+
with gr.Blocks() as demo:
|
110 |
+
with gr.Tab("CREATE TRANING FILES - This will process the data, extract the features and create your index file for you!"):
|
111 |
+
with gr.Row():
|
112 |
+
model_name = gr.Textbox(label="Model Name", value="My-Voice")
|
113 |
+
dataset_folder = gr.Textbox(label="Dataset Folder", value="/content/dataset")
|
114 |
+
youtube_link = gr.Textbox(label="YouTube Link (optional)")
|
115 |
+
with gr.Row():
|
116 |
+
start_button = gr.Button("Create Training Files")
|
117 |
+
f0method = gr.Dropdown(["pm", "harvest", "rmvpe", "rmvpe_gpu"], label="F0 Method", value="rmvpe_gpu")
|
118 |
+
extract_button = gr.Button("Extract Features")
|
119 |
+
train_button = gr.Button("Train Index")
|
120 |
+
|
121 |
+
output = gr.Textbox(label="Output")
|
122 |
+
|
123 |
+
start_button.click(create_training_files, inputs=[model_name, dataset_folder, youtube_link], outputs=output)
|
124 |
+
extract_button.click(extract_features, inputs=[model_name, f0method], outputs=output)
|
125 |
+
train_button.click(train_index, inputs=[model_name, "v2"], outputs=output)
|
126 |
+
|
127 |
+
demo.launch()
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
# beta state ......
|