File size: 8,768 Bytes
aa3b1c4
 
 
 
 
af590a1
aa3b1c4
 
 
 
 
 
af590a1
aa3b1c4
 
 
 
 
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
af590a1
 
 
aa3b1c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
language:
- da
- gmq
- nb
- false
- ru
- sv
- uk
- zle
tags:
- translation
- opus-mt-tc
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-zle-gmq
  results:
  - task:
      name: Translation rus-dan
      type: translation
      args: rus-dan
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus dan devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 28.0
  - task:
      name: Translation rus-nob
      type: translation
      args: rus-nob
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus nob devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 20.6
  - task:
      name: Translation rus-swe
      type: translation
      args: rus-swe
    dataset:
      name: flores101-devtest
      type: flores_101
      args: rus swe devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 26.4
  - task:
      name: Translation ukr-dan
      type: translation
      args: ukr-dan
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr dan devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 30.3
  - task:
      name: Translation ukr-nob
      type: translation
      args: ukr-nob
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr nob devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 21.1
  - task:
      name: Translation ukr-swe
      type: translation
      args: ukr-swe
    dataset:
      name: flores101-devtest
      type: flores_101
      args: ukr swe devtest
    metrics:
    - name: BLEU
      type: bleu
      value: 28.8
  - task:
      name: Translation rus-dan
      type: translation
      args: rus-dan
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-dan
    metrics:
    - name: BLEU
      type: bleu
      value: 59.6
  - task:
      name: Translation rus-nob
      type: translation
      args: rus-nob
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-nob
    metrics:
    - name: BLEU
      type: bleu
      value: 46.1
  - task:
      name: Translation rus-swe
      type: translation
      args: rus-swe
    dataset:
      name: tatoeba-test-v2021-08-07
      type: tatoeba_mt
      args: rus-swe
    metrics:
    - name: BLEU
      type: bleu
      value: 53.3
---
# opus-mt-tc-big-zle-gmq

Neural machine translation model for translating from East Slavic languages (zle) to North Germanic languages (gmq).

This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).

* Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)

```
@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}
```

## Model info

* Release: 2022-03-14
* source language(s): rus ukr
* target language(s): dan nob nor swe
* valid target language labels: >>dan<< >>nob<< >>nor<< >>swe<<
* model: transformer-big
* data: opusTCv20210807+pft ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge))
* tokenization: SentencePiece (spm32k,spm32k)
* original model: [opusTCv20210807+pft_transformer-big_2022-03-14.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.zip)
* more information released models: [OPUS-MT zle-gmq README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-gmq/README.md)
* more information about the model: [MarianMT](https://huggingface.co/docs/transformers/model_doc/marian)

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>>dan<<`

## Usage

A short example code:

```python
from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>dan<< Заўтра ўжо чацвер.",
    ">>swe<< Том грав з Мері в кішки-мишки."
]

model_name = "pytorch-models/opus-mt-tc-big-zle-gmq"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     I morgen er det torsdag.
#     Tom lekte med Mary i katt-möss.
```

You can also use OPUS-MT models with the transformers pipelines, for example:

```python
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-zle-gmq")
print(pipe(">>dan<< Заўтра ўжо чацвер."))

# expected output: I morgen er det torsdag.
```

## Benchmarks

* test set translations: [opusTCv20210807+pft_transformer-big_2022-03-14.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.test.txt)
* test set scores: [opusTCv20210807+pft_transformer-big_2022-03-14.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-gmq/opusTCv20210807+pft_transformer-big_2022-03-14.eval.txt)
* benchmark results: [benchmark_results.txt](benchmark_results.txt)
* benchmark output: [benchmark_translations.zip](benchmark_translations.zip)

| langpair | testset | chr-F | BLEU  | #sent | #words |
|----------|---------|-------|-------|-------|--------|
| rus-dan | tatoeba-test-v2021-08-07 | 0.74307 | 59.6 | 1713 | 11746 |
| rus-nob | tatoeba-test-v2021-08-07 | 0.66376 | 46.1 | 1277 | 11672 |
| rus-swe | tatoeba-test-v2021-08-07 | 0.69608 | 53.3 | 1282 | 8449 |
| bel-dan | flores101-devtest | 0.47621 | 13.9 | 1012 | 24638 |
| bel-nob | flores101-devtest | 0.44966 | 10.8 | 1012 | 23873 |
| bel-swe | flores101-devtest | 0.47274 | 13.2 | 1012 | 23121 |
| rus-dan | flores101-devtest | 0.55917 | 28.0 | 1012 | 24638 |
| rus-nob | flores101-devtest | 0.50724 | 20.6 | 1012 | 23873 |
| rus-swe | flores101-devtest | 0.55812 | 26.4 | 1012 | 23121 |
| ukr-dan | flores101-devtest | 0.57829 | 30.3 | 1012 | 24638 |
| ukr-nob | flores101-devtest | 0.52271 | 21.1 | 1012 | 23873 |
| ukr-swe | flores101-devtest | 0.57499 | 28.8 | 1012 | 23121 |

## Acknowledgements

The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.

## Model conversion info

* transformers version: 4.16.2
* OPUS-MT git hash: 1bdabf7
* port time: Wed Mar 23 23:13:54 EET 2022
* port machine: LM0-400-22516.local