language:
- en
- fr
tags:
- translation
license: cc-by-4.0
model-index:
- name: opus-mt-tc-big-en-fr
results:
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: flores101-devtest
type: flores_101
args: eng fra devtest
metrics:
- name: BLEU
type: bleu
value: 52.2
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: multi30k_test_2016_flickr
type: multi30k-2016_flickr
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 52.4
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: multi30k_test_2017_flickr
type: multi30k-2017_flickr
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 52.8
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: multi30k_test_2017_mscoco
type: multi30k-2017_mscoco
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 54.7
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: multi30k_test_2018_flickr
type: multi30k-2018_flickr
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 43.7
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: news-test2008
type: news-test2008
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 27.6
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: newsdiscussdev2015
type: newsdiscussdev2015
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 33.4
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: newsdiscusstest2015
type: newsdiscusstest2015
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 40.3
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: tatoeba-test-v2021-08-07
type: tatoeba_mt
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 53.2
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: tico19-test
type: tico19-test
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 40.6
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: newstest2009
type: wmt-2009-news
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 30
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: newstest2010
type: wmt-2010-news
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 33.5
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: newstest2011
type: wmt-2011-news
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 35
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: newstest2012
type: wmt-2012-news
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 32.8
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: newstest2013
type: wmt-2013-news
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 34.6
- task:
name: Translation eng-fra
type: translation
args: eng-fra
dataset:
name: newstest2014
type: wmt-2014-news
args: eng-fra
metrics:
- name: BLEU
type: bleu
value: 41.9
opus-mt-tc-big-en-fr
Neural machine translation model for translating from English (en) to French (fr).
This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train.
- Publications: OPUS-MT – Building open translation services for the World and The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT (Please, cite if you use this model.)
@inproceedings{tiedemann-thottingal-2020-opus,
title = "{OPUS}-{MT} {--} Building open translation services for the World",
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
month = nov,
year = "2020",
address = "Lisboa, Portugal",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2020.eamt-1.61",
pages = "479--480",
}
@inproceedings{tiedemann-2020-tatoeba,
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
author = {Tiedemann, J{\"o}rg},
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.wmt-1.139",
pages = "1174--1182",
}
Model info
- Release: 2022-03-09
- source language(s): eng
- target language(s): fra
- model: transformer-big
- data: opusTCv20210807+bt (source)
- tokenization: SentencePiece (spm32k,spm32k)
- original model: opusTCv20210807+bt_transformer-big_2022-03-09.zip
- more information released models: OPUS-MT eng-fra README
Usage
A short example code:
from transformers import MarianMTModel, MarianTokenizer
src_text = [
"The Portuguese teacher is very demanding.",
"When was your last hearing test?"
]
model_name = "pytorch-models/opus-mt-tc-big-en-fr"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
for t in translated:
print( tokenizer.decode(t, skip_special_tokens=True) )
# expected output:
# Le professeur de portugais est très exigeant.
# Quand a eu lieu votre dernier test auditif ?
You can also use OPUS-MT models with the transformers pipelines, for example:
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-en-fr")
print(pipe("The Portuguese teacher is very demanding."))
# expected output: Le professeur de portugais est très exigeant.
Benchmarks
- test set translations: opusTCv20210807+bt_transformer-big_2022-03-09.test.txt
- test set scores: opusTCv20210807+bt_transformer-big_2022-03-09.eval.txt
- benchmark results: benchmark_results.txt
- benchmark output: benchmark_translations.zip
langpair | testset | chr-F | BLEU | #sent | #words |
---|---|---|---|---|---|
eng-fra | tatoeba-test-v2021-08-07 | 0.69621 | 53.2 | 12681 | 106378 |
eng-fra | flores101-devtest | 0.72494 | 52.2 | 1012 | 28343 |
eng-fra | multi30k_test_2016_flickr | 0.72361 | 52.4 | 1000 | 13505 |
eng-fra | multi30k_test_2017_flickr | 0.72826 | 52.8 | 1000 | 12118 |
eng-fra | multi30k_test_2017_mscoco | 0.73547 | 54.7 | 461 | 5484 |
eng-fra | multi30k_test_2018_flickr | 0.66723 | 43.7 | 1071 | 15867 |
eng-fra | newsdiscussdev2015 | 0.60471 | 33.4 | 1500 | 27940 |
eng-fra | newsdiscusstest2015 | 0.64915 | 40.3 | 1500 | 27975 |
eng-fra | newssyscomb2009 | 0.58903 | 30.7 | 502 | 12331 |
eng-fra | news-test2008 | 0.55516 | 27.6 | 2051 | 52685 |
eng-fra | newstest2009 | 0.57907 | 30.0 | 2525 | 69263 |
eng-fra | newstest2010 | 0.60156 | 33.5 | 2489 | 66022 |
eng-fra | newstest2011 | 0.61632 | 35.0 | 3003 | 80626 |
eng-fra | newstest2012 | 0.59736 | 32.8 | 3003 | 78011 |
eng-fra | newstest2013 | 0.59700 | 34.6 | 3000 | 70037 |
eng-fra | newstest2014 | 0.66686 | 41.9 | 3003 | 77306 |
eng-fra | tico19-test | 0.63022 | 40.6 | 2100 | 64661 |
Acknowledgements
The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.
Model conversion info
- transformers version: 4.16.2
- OPUS-MT git hash: 3405783
- port time: Wed Apr 13 17:07:05 EEST 2022
- port machine: LM0-400-22516.local