distilbert-classn-LinearAlg-finetuned-span-width-2

This model is a fine-tuned version of dslim/distilbert-NER on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8927
  • Accuracy: 0.7698
  • F1: 0.7669
  • Precision: 0.7824
  • Recall: 0.7698

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
4.8367 0.6849 50 2.4596 0.0794 0.0714 0.0958 0.0794
4.9882 1.3699 100 2.4445 0.0794 0.0672 0.0879 0.0794
4.8852 2.0548 150 2.4040 0.0873 0.0904 0.1342 0.0873
4.7843 2.7397 200 2.3744 0.1429 0.1481 0.2396 0.1429
4.752 3.4247 250 2.3612 0.1032 0.1062 0.1491 0.1032
4.6277 4.1096 300 2.3446 0.1587 0.1570 0.1976 0.1587
4.4488 4.7945 350 2.2895 0.1746 0.1760 0.2217 0.1746
4.4244 5.4795 400 2.2383 0.2302 0.2282 0.3192 0.2302
3.9882 6.1644 450 2.1156 0.2381 0.2338 0.2955 0.2381
3.7244 6.8493 500 1.9715 0.3730 0.3763 0.4472 0.3730
3.2134 7.5342 550 1.8718 0.4206 0.3950 0.4017 0.4206
2.9113 8.2192 600 1.7821 0.4127 0.4249 0.5411 0.4127
2.4754 8.9041 650 1.6155 0.4841 0.4828 0.5088 0.4841
1.9316 9.5890 700 1.4559 0.5714 0.5673 0.5759 0.5714
1.6141 10.2740 750 1.2770 0.6429 0.6300 0.6630 0.6429
1.1867 10.9589 800 1.1722 0.6508 0.6439 0.6649 0.6508
0.9252 11.6438 850 1.0998 0.6825 0.6830 0.7084 0.6825
0.764 12.3288 900 1.0359 0.7143 0.7181 0.7575 0.7143
0.5821 13.0137 950 0.9742 0.7302 0.7288 0.7554 0.7302
0.4689 13.6986 1000 0.9252 0.7460 0.7459 0.7639 0.7460
0.3578 14.3836 1050 0.9470 0.7302 0.7281 0.7663 0.7302
0.2932 15.0685 1100 0.9157 0.7222 0.7181 0.7552 0.7222
0.2262 15.7534 1150 0.8814 0.7540 0.7525 0.7723 0.7540
0.2127 16.4384 1200 0.8926 0.7381 0.7349 0.7488 0.7381
0.1445 17.1233 1250 0.8955 0.7698 0.7672 0.7891 0.7698
0.1183 17.8082 1300 0.8903 0.7698 0.7648 0.8007 0.7698
0.0757 18.4932 1350 0.8743 0.7698 0.7656 0.7831 0.7698
0.0939 19.1781 1400 0.8584 0.8016 0.8032 0.8200 0.8016
0.0705 19.8630 1450 0.8636 0.7857 0.7849 0.7965 0.7857
0.0605 20.5479 1500 0.8750 0.7778 0.7743 0.7831 0.7778
0.0467 21.2329 1550 0.8834 0.7778 0.7762 0.7898 0.7778
0.0777 21.9178 1600 0.8909 0.7698 0.7668 0.7809 0.7698
0.0349 22.6027 1650 0.8852 0.7698 0.7669 0.7824 0.7698
0.0442 23.2877 1700 0.8873 0.7698 0.7669 0.7824 0.7698
0.0253 23.9726 1750 0.8917 0.7698 0.7669 0.7824 0.7698
0.0335 24.6575 1800 0.8927 0.7698 0.7669 0.7824 0.7698

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
21
Safetensors
Model size
65.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Heather-Driver/distilbert-classn-LinearAlg-finetuned-span-width-2

Finetuned
(27)
this model