File size: 19,437 Bytes
7f82313 1ad822b 7f82313 1ad822b 7f82313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# Auton LabによるMomentライブラリをTransformers向けに書き換えたものです。
# Embeddingに特化したアーキテクチャとなっています。
# refers: https://github.com/moment-timeseries-foundation-model/moment
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import math
import numpy.typing as npt
import torch
from torch import nn
from transformers import PreTrainedModel
from transformers import T5Config, T5Model
from transformers.utils import logging
from .configuration_moment import MomentConfig
logger = logging.get_logger(__name__)
@dataclass
class TimeseriesOutputs:
# forecast: npt.NDArray = None
# anomaly_scores: npt.NDArray = None
logits: npt.NDArray = None
labels: int = None
input_mask: npt.NDArray = None
pretrain_mask: npt.NDArray = None
# reconstruction: npt.NDArray = None
embeddings: npt.NDArray = None
metadata: dict = None
illegal_output: bool = False
hidden_states: npt.NDArray = None # For Mists model
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/utils/masking.py#L6C1-L6C2
class Masking:
def __init__(
self, mask_ratio: float = 0.3, patch_len: int = 8, stride: Optional[int] = None
):
"""
Indices with 0 mask are hidden, and with 1 are observed.
"""
self.mask_ratio = mask_ratio
self.patch_len = patch_len
self.stride = patch_len if stride is None else stride
@staticmethod
def convert_seq_to_patch_view(
mask: torch.Tensor, patch_len: int = 8, stride: Optional[int] = None
):
"""
Input:
mask : torch.Tensor of shape [batch_size x seq_len]
Output
mask : torch.Tensor of shape [batch_size x n_patches]
"""
stride = patch_len if stride is None else stride
mask = mask.unfold(dimension=-1, size=patch_len, step=stride)
# mask : [batch_size x n_patches x patch_len]
return (mask.sum(dim=-1) == patch_len).long()
@staticmethod
def convert_patch_to_seq_view(
mask: torch.Tensor,
patch_len: int = 8,
):
"""
Input:
mask : torch.Tensor of shape [batch_size x n_patches]
Output:
mask : torch.Tensor of shape [batch_size x seq_len]
"""
return mask.repeat_interleave(patch_len, dim=-1)
def generate_mask(self, x: torch.Tensor, input_mask: Optional[torch.Tensor] = None):
"""
Input:
x : torch.Tensor of shape
[batch_size x n_channels x n_patches x patch_len] or
[batch_size x n_channels x seq_len]
input_mask: torch.Tensor of shape [batch_size x seq_len] or
[batch_size x n_patches]
Output:
mask : torch.Tensor of shape [batch_size x seq_len]
"""
if x.ndim == 4:
return self._mask_patch_view(x, input_mask=input_mask)
elif x.ndim == 3:
return self._mask_seq_view(x, input_mask=input_mask)
def _mask_patch_view(self, x, input_mask=None):
"""
Input:
x : torch.Tensor of shape
[batch_size x n_channels x n_patches x patch_len]
input_mask: torch.Tensor of shape [batch_size x seq_len]
Output:
mask : torch.Tensor of shape [batch_size x n_patches]
"""
input_mask = self.convert_seq_to_patch_view(
input_mask, self.patch_len, self.stride
)
n_observed_patches = input_mask.sum(dim=-1, keepdim=True) # batch_size x 1
batch_size, _, n_patches, _ = x.shape
len_keep = torch.ceil(n_observed_patches * (1 - self.mask_ratio)).long()
noise = torch.rand(
batch_size, n_patches, device=x.device
) # noise in [0, 1], batch_size x n_channels x n_patches
noise = torch.where(
input_mask == 1, noise, torch.ones_like(noise)
) # only keep the noise of observed patches
# Sort noise for each sample
ids_shuffle = torch.argsort(
noise, dim=1
) # Ascend: small is keep, large is remove
ids_restore = torch.argsort(
ids_shuffle, dim=1
) # ids_restore: [batch_size x n_patches]
# Generate the binary mask: 0 is keep, 1 is remove
mask = torch.zeros(
[batch_size, n_patches], device=x.device
) # mask: [batch_size x n_patches]
for i in range(batch_size):
mask[i, : len_keep[i]] = 1
# Unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
return mask.long()
def _mask_seq_view(self, x, input_mask=None):
"""
Input:
x : torch.Tensor of shape
[batch_size x n_channels x seq_len]
input_mask: torch.Tensor of shape [batch_size x seq_len]
Output:
mask : torch.Tensor of shape [batch_size x seq_len]
"""
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
mask = self._mask_patch_view(x, input_mask=input_mask)
return self.convert_patch_to_seq_view(mask, self.patch_len).long()
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L5
def nanvar(tensor, dim=None, keepdim=False):
tensor_mean = tensor.nanmean(dim=dim, keepdim=True)
output = (tensor - tensor_mean).square().nanmean(dim=dim, keepdim=keepdim)
return output
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L11
def nanstd(tensor, dim=None, keepdim=False):
output = nanvar(tensor, dim=dim, keepdim=keepdim)
output = output.sqrt()
return output
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/revin.py#L17
class RevIN(nn.Module):
def __init__(self, num_features: int, eps: float = 1e-5, affine: bool = False):
"""
:param num_features: the number of features or channels
:param eps: a value added for numerical stability
:param affine: if True, RevIN has learnable affine parameters
"""
super(RevIN, self).__init__()
self.num_features = num_features
self.eps = eps
self.affine = affine
if self.affine:
self._init_params()
def forward(self, x: torch.Tensor, mode: str = "norm", mask: torch.Tensor = None):
"""
:param x: input tensor of shape (batch_size, n_channels, seq_len)
:param mode: 'norm' or 'denorm'
:param mask: input mask of shape (batch_size, seq_len)
:return: RevIN transformed tensor
"""
if mode == "norm":
self._get_statistics(x, mask=mask)
x = self._normalize(x)
elif mode == "denorm":
x = self._denormalize(x)
else:
raise NotImplementedError
return x
def _init_params(self):
# initialize RevIN params: (C,)
self.affine_weight = nn.Parameter(torch.ones(1, self.num_features, 1))
self.affine_bias = nn.Parameter(torch.zeros(1, self.num_features, 1))
def _get_statistics(self, x, mask=None):
"""
x : batch_size x n_channels x seq_len
mask : batch_size x seq_len
"""
if mask is None:
mask = torch.ones((x.shape[0], x.shape[-1]))
n_channels = x.shape[1]
mask = mask.unsqueeze(1).repeat(1, n_channels, 1).bool()
# Set masked positions to NaN, and unmasked positions are taken from x
masked_x = torch.where(mask, x, torch.nan)
self.mean = torch.nanmean(masked_x, dim=-1, keepdim=True).detach()
self.stdev = nanstd(masked_x, dim=-1, keepdim=True).detach() + self.eps
# self.stdev = torch.sqrt(
# torch.var(masked_x, dim=-1, keepdim=True) + self.eps).get_data().detach()
# NOTE: By default not bessel correction
def _normalize(self, x):
x = x - self.mean
x = x / self.stdev
if self.affine:
x = x * self.affine_weight
x = x + self.affine_bias
return x
def _denormalize(self, x):
if self.affine:
x = x - self.affine_bias
x = x / (self.affine_weight + self.eps * self.eps)
x = x * self.stdev
x = x + self.mean
return x
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L10
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000, model_name="MOMENT"):
super(PositionalEmbedding, self).__init__()
self.model_name = model_name
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model).float()
pe.require_grad = False
position = torch.arange(0, max_len).float().unsqueeze(1)
div_term = (
torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)
).exp()
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer("pe", pe)
def forward(self, x):
if (
self.model_name == "MOMENT"
or self.model_name == "TimesNet"
or self.model_name == "GPT4TS"
):
return self.pe[:, : x.size(2)]
else:
return self.pe[:, : x.size(1)]
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L181
class PatchEmbedding(nn.Module):
def __init__(
self,
d_model: int = 768,
seq_len: int = 512,
patch_len: int = 8,
stride: int = 8,
dropout: int = 0.1,
add_positional_embedding: bool = False,
value_embedding_bias: bool = False,
orth_gain: float = 1.41,
):
super(PatchEmbedding, self).__init__()
self.patch_len = patch_len
self.seq_len = seq_len
self.stride = stride
self.d_model = d_model
self.add_positional_embedding = add_positional_embedding
self.value_embedding = nn.Linear(patch_len, d_model, bias=value_embedding_bias)
self.mask_embedding = nn.Parameter(torch.zeros(d_model))
if orth_gain is not None:
torch.nn.init.orthogonal_(self.value_embedding.weight, gain=orth_gain)
if value_embedding_bias:
self.value_embedding.bias.data.zero_()
# torch.nn.init.orthogonal_(self.mask_embedding, gain=orth_gain) # Fails
# Positional embedding
if self.add_positional_embedding:
self.position_embedding = PositionalEmbedding(d_model)
# Residual dropout
self.dropout = nn.Dropout(dropout)
def forward(self, x: torch.Tensor, mask: torch.Tensor = None) -> torch.Tensor:
mask = Masking.convert_seq_to_patch_view(
mask, patch_len=self.patch_len
).unsqueeze(-1)
# mask : [batch_size x n_patches x 1]
n_channels = x.shape[1]
mask = (
mask.repeat_interleave(self.d_model, dim=-1)
.unsqueeze(1)
.repeat(1, n_channels, 1, 1)
)
# mask : [batch_size x n_channels x n_patches x d_model]
# Input encoding
x = mask * self.value_embedding(x) + (1 - mask) * self.mask_embedding
if self.add_positional_embedding:
x = x + self.position_embedding(x)
return self.dropout(x)
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/layers/embed.py#L237C1-L251C17
class Patching(nn.Module):
def __init__(self, patch_len: int, stride: int):
super().__init__()
self.patch_len = patch_len
self.stride = stride
if self.stride != self.patch_len:
logger.warning(
"Stride and patch length are not equal. "
"This may lead to unexpected behavior."
)
def forward(self, x):
x = x.unfold(dimension=-1, size=self.patch_len, step=self.stride)
# x : [batch_size x n_channels x num_patch x patch_len]
return x
class MomentPreTrainedModel(PreTrainedModel):
config_class = MomentConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["T5Block"]
_skip_keys_device_placement = ""
# 本来のT5の_init_weightsはもっと詳細だが、事前学習の予定はないためここでは簡単にしている。
# refers: https://github.com/huggingface/transformers/blob/517df566f572d90e6301df87870f651f0d1b1110/src/transformers/models/t5/modeling_t5.py#L810
def _init_weights(self, module):
std = self.config.t5_config["initializer_factor"]
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class MomentEmbeddingModel(MomentPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.seq_len = config.seq_len
self.patch_len = config.patch_len
# TODO: normalizer, tokenizerはProcessor側に配置するべきか?
# 現状の考え: 特にMomentから切り離す用途もない。
# Processor側では入力の512timestepsへの切り取り等、
# input validationとTensorへの切り替えを行うで良さそう。
self.normalizer = RevIN(
num_features=getattr(config, "revin_num_features", 1), eps=getattr(config, "revin_eps", 1e-5), affine=getattr(config, "revin_affine", False)
)
self.tokenizer = Patching(
patch_len=config.patch_len, stride=config.patch_stride_len
)
# モデル構成
self.patch_embedding = PatchEmbedding(
d_model=config.d_model,
seq_len=config.seq_len,
patch_len=config.patch_len,
stride=config.patch_stride_len,
dropout=getattr(config, "dropout", 0.1),
add_positional_embedding=getattr(config, "add_positional_embedding", True),
value_embedding_bias=getattr(config, "value_embedding_bias", False),
orth_gain=getattr(config, "orth_gain", 1.41),
)
self.mask_generator = Masking(mask_ratio=getattr(config, "mask_ratio", 0.0))
self.encoder = self._get_t5_encoder(config.t5_config, config.enable_gradient_checkpointing)
self.head = nn.Identity()
# Frozen parameters
self.freeze_embedder = getattr(config, "freeze_embedder", True)
self.freeze_encoder = getattr(config, "freeze_encoder", True)
self.freeze_head = getattr(config, "freeze_head", False)
if self.freeze_embedder:
self.patch_embedding = freeze_parameters(self.patch_embedding)
if self.freeze_encoder:
self.encoder = freeze_parameters(self.encoder)
if self.freeze_head:
self.head = freeze_parameters(self.head)
def _get_t5_encoder(self, config: dict, enable_gradient_checkpointing: bool) -> nn.Module:
# random initialize
# Momentでは(言語で)事前学習済みのモデルを取得することもできるようになっている
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/moment.py#L205
t5_config = T5Config.from_dict(config)
t5_model = T5Model(t5_config)
t5_model_encoder = t5_model.get_encoder()
if enable_gradient_checkpointing:
t5_model_encoder.gradient_checkpointing_enable()
logger.info("Enabling gradient checkpointing.")
return t5_model_encoder
def embed(
self,
x_enc: torch.Tensor,
input_mask: torch.Tensor = None,
reduction: str = "mean",
**kwargs,
) -> TimeseriesOutputs:
batch_size, n_channels, seq_len = x_enc.shape
if input_mask is None:
input_mask = torch.ones((batch_size, seq_len)).to(x_enc.device)
x_enc = self.normalizer(x=x_enc, mask=input_mask, mode="norm")
x_enc = torch.nan_to_num(x_enc, nan=0, posinf=0, neginf=0)
input_mask_patch_view = Masking.convert_seq_to_patch_view(
input_mask, self.patch_len
)
x_enc = self.tokenizer(x=x_enc)
enc_in = self.patch_embedding(x_enc, mask=input_mask)
n_patches = enc_in.shape[2]
enc_in = enc_in.reshape(
(batch_size * n_channels, n_patches, self.config.d_model)
)
patch_view_mask = Masking.convert_seq_to_patch_view(input_mask, self.patch_len)
attention_mask = patch_view_mask.repeat_interleave(n_channels, dim=0)
outputs = self.encoder(inputs_embeds=enc_in, attention_mask=attention_mask)
enc_out = outputs.last_hidden_state
# For Mists model
hidden_states = outputs.last_hidden_state
enc_out = enc_out.reshape((-1, n_channels, n_patches, self.config.d_model))
# [batch_size x n_channels x n_patches x d_model]
# For Mists model
# [batch_size, n_channels x n_patches, d_model]
# hidden_states = enc_out.reshape(batch_size, n_channels * n_patches, self.config.d_model)
if reduction == "mean":
enc_out = enc_out.mean(dim=1, keepdim=False) # Mean across channels
# [batch_size x n_patches x d_model]
input_mask_patch_view = input_mask_patch_view.unsqueeze(-1).repeat(
1, 1, self.config.d_model
)
enc_out = (input_mask_patch_view * enc_out).sum(
dim=1
) / input_mask_patch_view.sum(dim=1)
else:
raise NotImplementedError(f"Reduction method {reduction} not implemented.")
return TimeseriesOutputs(
embeddings=enc_out, input_mask=input_mask, metadata=reduction, hidden_states=hidden_states
)
def forward(
self,
time_series_values: torch.Tensor,
# mask: torch.Tensor = None,
input_mask: torch.Tensor = None,
**kwargs,
) -> TimeseriesOutputs:
if input_mask is None:
input_mask = torch.ones_like(time_series_values[:, 0, :])
return self.embed(x_enc=time_series_values, input_mask=input_mask, **kwargs)
# refers: https://github.com/moment-timeseries-foundation-model/moment/blob/088b253a1138ac7e48a7efc9bf902336c9eec8d9/momentfm/models/moment.py#L601
def freeze_parameters(model):
"""
Freeze parameters of the model
"""
# Freeze the parameters
for name, param in model.named_parameters():
param.requires_grad = False
return model |