File size: 22,620 Bytes
6735234 7b90d31 6735234 0dcfc8f 508bf31 0dcfc8f 9ee1a60 f407e0e 9ee1a60 af152d7 9ee1a60 f407e0e 9ee1a60 f407e0e 508bf31 f407e0e c2ac027 9ee1a60 f407e0e 9ee1a60 f407e0e 9ee1a60 f407e0e 508bf31 9ee1a60 f407e0e 508bf31 f407e0e af152d7 f407e0e af152d7 f407e0e af152d7 f407e0e af152d7 f407e0e af152d7 f407e0e af152d7 f407e0e 0dcfc8f 9ee1a60 0dcfc8f 9ee1a60 af152d7 ee686c1 628b517 9ee1a60 628b517 f407e0e 628b517 ee686c1 628b517 f407e0e af152d7 f407e0e 628b517 af152d7 f407e0e 628b517 9ee1a60 f407e0e 9ee1a60 628b517 af152d7 f407e0e 628b517 f407e0e 628b517 af152d7 f407e0e 628b517 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
---
license: apache-2.0
pipeline_tag: reinforcement-learning
tags:
- Deep Reinforcement Learning
- Combinatorial Optimization
- Reinforcement Learning
- Vehicle Routing Problem
---

# ✊GreedRL
## 🏆Award
## Introduction
* **GENERAL**
* **HIGH-PERFORMANCE**
* **USER-FRIENDLY**
## Architecture design
The entire architecture is divided into three layers:
* **High-performance Env framework**
The constraints and optimization objectives for the problems to be solved are defined in the Reinforcement Learning(RL) Environment(Env).
Based on performance and ease of use considerations, the Env framework provides two implementations:one based on **pytorch** and one based on **CUDA C++**.
To facilitate the definition of problems for developers, the framework abstracts multiple variables to represent the environment's state, which are automatically generated after being declared by the user. When defining constraints and optimization objectives, developers can directly refer to the declared variables.
Currently, various VRP variants such as CVRP, VRPTW and PDPTW, as well as problems such as Batching, are supported.
* **Pluggable NN components**
The framework provides certain neural network(NN) components, and developers can also implement custom neural network components.
* **High-performance NN operators**
In order to achieve the ultimate performance, the framework implements some high-performance operators specifically for Combinatorial Optimization(CO) problems to replace pytorch operators, such as the Masked Addition Attention and Masked Softmax Sampling."

## Network design
The neural network adopts the Seq2Seq architecture commonly used in Natural Language Processing(NLP), with the Transformer used in the Encoding part and RNN used in the decoding part, as shown in the diagram below.

## Modeling examples
### Capacitated Vehicle Routing Problem (CVRP)
<details>
<summary>CVRP</summary>
```python
from greedrl.feature import *
from greedrl.variable import *
from greedrl.function import *
from greedrl import Problem, Solution, Solver
from greedrl import runner
features = [continuous_feature('task_demand'),
continuous_feature('worker_weight_limit'),
continuous_feature('distance_matrix'),
variable_feature('distance_this_to_task'),
variable_feature('distance_task_to_end')]
variables = [task_demand_now('task_demand_now', feature='task_demand'),
task_demand_now('task_demand_this', feature='task_demand', only_this=True),
feature_variable('task_weight'),
worker_variable('worker_weight_limit'),
worker_used_resource('worker_used_weight', task_require='task_weight'),
edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True),
edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True),
edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)]
class Constraint:
def do_task(self):
return self.task_demand_this
def mask_task(self):
# 已经完成的任务
mask = self.task_demand_now <= 0
# 车辆容量限制
worker_weight_limit = self.worker_weight_limit - self.worker_used_weight
mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None]
return mask
def finished(self):
return torch.all(self.task_demand_now <= 0, 1)
class Objective:
def step_worker_end(self):
return self.distance_last_to_this
def step_task(self):
return self.distance_last_to_this
```
</details>
### Pickup and Delivery Problem with Time Windows(PDPTW)
<details>
<summary>PDPTW</summary>
```python
from greedrl.model import runner
from greedrl.feature import *
from greedrl.variable import *
from greedrl.function import *
from greedrl import Problem, Solution, Solver
features = [local_category('task_group'),
global_category('task_priority', 2),
variable_feature('distance_this_to_task'),
variable_feature('distance_task_to_end')]
variables = [task_demand_now('task_demand_now', feature='task_demand'),
task_demand_now('task_demand_this', feature='task_demand', only_this=True),
feature_variable('task_weight'),
feature_variable('task_group'),
feature_variable('task_priority'),
feature_variable('task_due_time2', feature='task_due_time'),
task_variable('task_due_time'),
task_variable('task_service_time'),
task_variable('task_due_time_penalty'),
worker_variable('worker_basic_cost'),
worker_variable('worker_distance_cost'),
worker_variable('worker_due_time'),
worker_variable('worker_weight_limit'),
worker_used_resource('worker_used_weight', task_require='task_weight'),
worker_used_resource('worker_used_time', 'distance_matrix', 'task_service_time', 'task_ready_time',
'worker_ready_time'),
edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True),
edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True),
edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)]
class Constraint:
def do_task(self):
return self.task_demand_this
def mask_worker_end(self):
return task_group_split(self.task_group, self.task_demand_now <= 0)
def mask_task(self):
mask = self.task_demand_now <= 0
mask |= task_group_priority(self.task_group, self.task_priority, mask)
worker_used_time = self.worker_used_time[:, None] + self.distance_this_to_task
mask |= (worker_used_time > self.task_due_time2) & (self.task_priority == 0)
# 容量约束
worker_weight_limit = self.worker_weight_limit - self.worker_used_weight
mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None]
return mask
def finished(self):
return torch.all(self.task_demand_now <= 0, 1)
class Objective:
def step_worker_start(self):
return self.worker_basic_cost
def step_worker_end(self):
feasible = self.worker_used_time <= self.worker_due_time
return self.distance_last_to_this * self.worker_distance_cost, feasible
def step_task(self):
worker_used_time = self.worker_used_time - self.task_service_time
feasible = worker_used_time <= self.task_due_time
feasible &= worker_used_time <= self.worker_due_time
cost = self.distance_last_to_this * self.worker_distance_cost
return torch.where(feasible, cost, cost + self.task_due_time_penalty), feasible
```
</details>
### VRP with Time Windows(VRPTW)
<details>
<summary>VRPTW</summary>
```python
from greedrl import Problem, Solution, Solver
from greedrl.feature import *
from greedrl.variable import *
from greedrl.function import *
from greedrl.model import runner
from greedrl.myenv import VrptwEnv
features = [continuous_feature('worker_weight_limit'),
continuous_feature('worker_ready_time'),
continuous_feature('worker_due_time'),
continuous_feature('worker_basic_cost'),
continuous_feature('worker_distance_cost'),
continuous_feature('task_demand'),
continuous_feature('task_weight'),
continuous_feature('task_ready_time'),
continuous_feature('task_due_time'),
continuous_feature('task_service_time'),
continuous_feature('distance_matrix')]
variables = [task_demand_now('task_demand_now', feature='task_demand'),
task_demand_now('task_demand_this', feature='task_demand', only_this=True),
feature_variable('task_weight'),
feature_variable('task_due_time'),
feature_variable('task_ready_time'),
feature_variable('task_service_time'),
worker_variable('worker_weight_limit'),
worker_variable('worker_due_time'),
worker_variable('worker_basic_cost'),
worker_variable('worker_distance_cost'),
worker_used_resource('worker_used_weight', task_require='task_weight'),
worker_used_resource('worker_used_time', 'distance_matrix', 'task_service_time', 'task_ready_time',
'worker_ready_time'),
edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True),
edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True),
edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True)]
class Constraint:
def do_task(self):
return self.task_demand_this
def mask_task(self):
# 已经完成的任务
mask = self.task_demand_now <= 0
# 车辆容量限制
worker_weight_limit = self.worker_weight_limit - self.worker_used_weight
mask |= self.task_demand_now * self.task_weight > worker_weight_limit[:, None]
worker_used_time = self.worker_used_time[:, None] + self.distance_this_to_task
mask |= worker_used_time > self.task_due_time
worker_used_time = torch.max(worker_used_time, self.task_ready_time)
worker_used_time += self.task_service_time
worker_used_time += self.distance_task_to_end
mask |= worker_used_time > self.worker_due_time[:, None]
return mask
def finished(self):
return torch.all(self.task_demand_now <= 0, 1)
class Objective:
def step_worker_start(self):
return self.worker_basic_cost
def step_worker_end(self):
return self.distance_last_to_this * self.worker_distance_cost
def step_task(self):
return self.distance_last_to_this * self.worker_distance_cost
```
</details>
### Travelling Salesman Problem(TSP)
<details>
<summary>TSP</summary>
```python
from greedrl.feature import *
from greedrl.variable import *
from greedrl import Problem
from greedrl import runner
features = [continuous_feature('task_location'),
variable_feature('distance_this_to_task'),
variable_feature('distance_task_to_end')]
variables = [task_demand_now('task_demand_now', feature='task_demand'),
task_demand_now('task_demand_this', feature='task_demand', only_this=True),
edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True),
edge_variable('distance_this_to_task', feature='distance_matrix', this_to_task=True),
edge_variable('distance_task_to_end', feature='distance_matrix', task_to_end=True),
edge_variable('distance_last_to_loop', feature='distance_matrix', last_to_loop=True)]
class Constraint:
def do_task(self):
return self.task_demand_this
def mask_task(self):
mask = self.task_demand_now <= 0
return mask
def mask_worker_end(self):
return torch.any(self.task_demand_now > 0, 1)
def finished(self):
return torch.all(self.task_demand_now <= 0, 1)
class Objective:
def step_worker_end(self):
return self.distance_last_to_loop
def step_task(self):
return self.distance_last_to_this
```
</details>
### Split Delivery Vehicle Routing Problem(SDVRP)
<details>
<summary>SDVRP</summary>
```python
from greedrl.feature import *
from greedrl.variable import *
from greedrl import Problem
from greedrl import runner
features = [continuous_feature('task_demand'),
continuous_feature('worker_weight_limit'),
continuous_feature('distance_matrix'),
variable_feature('distance_this_to_task'),
variable_feature('distance_task_to_end')]
variables = [task_demand_now('task_demand'),
task_demand_now('task_demand_this', feature='task_demand', only_this=True),
feature_variable('task_weight'),
task_variable('task_weight_this', feature='task_weight'),
worker_variable('worker_weight_limit'),
worker_used_resource('worker_used_weight', task_require='task_weight'),
edge_variable('distance_last_to_this', feature='distance_matrix', last_to_this=True)]
class Constraint:
def do_task(self):
worker_weight_limit = self.worker_weight_limit - self.worker_used_weight
return torch.min(self.task_demand_this, worker_weight_limit // self.task_weight_this)
def mask_task(self):
mask = self.task_demand <= 0
worker_weight_limit = self.worker_weight_limit - self.worker_used_weight
mask |= self.task_weight > worker_weight_limit[:, None]
return mask
def finished(self):
return torch.all(self.task_demand <= 0, 1)
class Objective:
def step_worker_end(self):
return self.distance_last_to_this
def step_task(self):
return self.distance_last_to_this
```
</details>
### Realistic Business Scenario
<details>
<summary>real-time Dynamic Pickup and Delivery Problem(DPDP)</summary>
```python
from greedrl.feature import *
from greedrl.variable import *
from greedrl.function import *
from greedrl import Problem
from greedrl import runner
features = [local_category('task_order'),
global_category('task_type', 2),
global_category('task_new_order', 2),
variable_feature('time_this_to_task'),
continuous_feature('x_time_matrix'),
continuous_feature('task_due_time_x'),
continuous_feature('worker_task_mask')]
variables = [task_demand_now('task_demand_now', feature='task_demand'),
task_demand_now('task_demand_this', feature='task_demand', only_this=True),
task_variable('task_pickup_this', feature='task_pickup'),
task_variable('task_due_time_this', feature='task_due_time'),
feature_variable('task_order', feature='task_order'),
feature_variable('task_type', feature='task_type'),
feature_variable('task_new_pickup', feature='task_new_pickup'),
feature_variable('worker_task_mask', feature='worker_task_mask'),
worker_count_now('worker_count_now', feature='worker_count'),
worker_variable('worker_min_old_task_this', feature='worker_min_old_task'),
worker_variable('worker_max_new_order_this', feature='worker_max_new_order'),
worker_variable('worker_task_mask_this', feature='worker_task_mask'),
worker_used_resource('worker_used_old_task', task_require='task_old'),
worker_used_resource('worker_used_new_order', task_require='task_new_pickup'),
worker_used_resource('worker_used_time', edge_require='time_matrix'),
edge_variable('time_this_to_task', feature='x_time_matrix', this_to_task=True)]
class Constraint:
def do_task(self):
return self.task_demand_this
def mask_worker_start(self):
mask = self.worker_count_now <= 0
finished = self.task_demand_now <= 0
worker_task_mask = self.worker_task_mask | finished[:, None, :]
mask |= torch.all(worker_task_mask, 2)
return mask
def mask_worker_end(self):
mask = self.worker_used_old_task < self.worker_min_old_task_this
mask |= task_group_split(self.task_order, self.task_demand_now <= 0)
return mask
def mask_task(self):
mask = self.task_demand_now <= 0
mask |= task_group_priority(self.task_order, self.task_type, mask)
worker_max_new_order = self.worker_max_new_order_this - self.worker_used_new_order
mask |= self.task_new_pickup > worker_max_new_order[:, None]
mask |= self.worker_task_mask_this
return mask
def finished(self):
worker_mask = self.worker_count_now <= 0
task_mask = self.task_demand_now <= 0
worker_task_mask = worker_mask[:, :, None] | task_mask[:, None, :]
worker_task_mask |= self.worker_task_mask
batch_size = worker_task_mask.size(0)
worker_task_mask = worker_task_mask.view(batch_size, -1)
return worker_task_mask.all(1)
class Objective:
def step_task(self):
over_time = (self.worker_used_time - self.task_due_time_this).clamp(min=0)
pickup_time = self.worker_used_time * self.task_pickup_this
return self.worker_used_time + over_time + pickup_time
def step_finish(self):
return self.task_demand_now.sum(1) * 1000
```
</details>
### Order Batching Problem
<details>
<summary>Batching</summary>
```python
from greedrl import Problem, Solver
from greedrl.feature import *
from greedrl.variable import *
from greedrl import runner
features = [local_feature('task_area'),
local_feature('task_roadway'),
local_feature('task_area_group'),
sparse_local_feature('task_item_id', 'task_item_num'),
sparse_local_feature('task_item_owner_id', 'task_item_num'),
variable_feature('worker_task_item'),
variable_feature('worker_used_roadway'),
variable_feature('worker_used_area')]
variables = [task_demand_now('task_demand_now', feature='task_demand'),
task_demand_now('task_demand_this', feature='task_demand', only_this=True),
feature_variable('task_item_id'),
feature_variable('task_item_num'),
feature_variable('task_item_owner_id'),
feature_variable('task_area'),
feature_variable('task_area_group'),
feature_variable('task_load'),
feature_variable('task_group'),
worker_variable('worker_load_limit'),
worker_variable('worker_area_limit'),
worker_variable('worker_area_group_limit'),
worker_task_item('worker_task_item', item_id='task_item_id', item_num='task_item_num'),
worker_task_item('worker_task_item_owner', item_id='task_item_owner_id', item_num='task_item_num'),
worker_used_resource('worker_used_load', task_require='task_load'),
worker_used_resource('worker_used_area', task_require='task_area'),
worker_used_resource('worker_used_roadway', task_require='task_roadway'),
worker_used_resource('worker_used_area_group', task_require='task_area_group')]
class Constraint:
def do_task(self):
return self.task_demand_this
def mask_worker_end(self):
return self.worker_used_load < self.worker_load_limit
def mask_task(self):
# completed tasks
mask = self.task_demand_now <= 0
# mask |= task_group_priority(self.task_group, self.task_out_stock_time, mask)
NT = self.task_item_id.size(1)
worker_task_item = self.worker_task_item[:, None, :]
worker_task_item = worker_task_item.expand(-1, NT, -1)
task_item_in_worker = worker_task_item.gather(2, self.task_item_id.long())
task_item_in_worker = (task_item_in_worker > 0) & (self.task_item_num > 0)
worker_task_item_owner = self.worker_task_item_owner[:, None, :]
worker_task_item_owner = worker_task_item_owner.expand(-1, NT, -1)
task_item_owner_in_worker = worker_task_item_owner.gather(2, self.task_item_owner_id.long())
task_item_owner_in_worker = (task_item_owner_in_worker > 0) & (self.task_item_num > 0)
#
mask |= torch.any(task_item_in_worker & ~task_item_owner_in_worker, 2)
worker_load_limit = self.worker_load_limit - self.worker_used_load
mask |= (self.task_load > worker_load_limit[:, None])
task_area = self.task_area + self.worker_used_area[:, None, :]
task_area_num = task_area.clamp(0, 1).sum(2, dtype=torch.int32)
mask |= (task_area_num > self.worker_area_limit[:, None])
tak_area_group = self.task_area_group + self.worker_used_area_group[:, None, :]
tak_area_group_num = tak_area_group.clamp(0, 1).sum(2, dtype=torch.int32)
mask |= (tak_area_group_num > self.worker_area_group_limit[:, None])
return mask
def finished(self):
return torch.all(self.task_demand_now <= 0, 1)
class Objective:
def step_worker_end(self):
area_num = self.worker_used_area.clamp(0, 1).sum(1)
roadway_num = self.worker_used_roadway.clamp(0, 1).sum(1)
item_num = self.worker_task_item.clamp(0, 1).sum(1)
penalty = (self.worker_load_limit - self.worker_used_load) * 10
return area_num * 100 + roadway_num * 10 + item_num + penalty
```
</details>
#
# 🤠GreedRL-CVRP-pretrained model
## Model description
## Intended uses & limitations
You can use these model for solving the vehicle routing problems (VRPs) with reinforcement learning (RL).
## How to use
### Requirements
This library requires Python == 3.8. [Miniconda](https://docs.conda.io/en/latest/miniconda.html#system-requirements) / [Anaconda](https://docs.anaconda.com/anaconda/install/) is our recommended Python distribution.
```aidl
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
```
You need to compile first and add the resulting library `greedrl_c` to the `PYTHONPATH`
```aidl
python setup.py build
export PYTHONPATH={root_path}/greedrl/build/lib.linux-x86_64-cpython-38/:$PYTHONPATH
```
### Training
We provide example of Capacitated VRP(CVRP) for training and inference.
1. Training data
We use the generated data for the training phase, the customers and depot locations are randomly generated in the unit square [0,1] X [0,1].
For the CVRP, we assume that the demand of each node is a discrete number in {1,...,9}, chosen uniformly at random.
2. Start training
```python
cd examples/cvrp
python train.py --model_filename cvrp_5000.pt --problem_size 5000
```
### Evaluation
We provide some pretrained models for different CVRP problem sizes, such as `cvrp_100`, `cvrp_1000`, `cvrp_2000` and `cvrp_5000`, that you can directly use for inference.
```python
cd examples/cvrp
python solve.py --device cuda --model_name cvrp_5000.pt --problem_size 5000
```
## Support
For commercial enquiries, please contact [us](huangxuankun.hxk@cainiao.com).
## About GreedRL
- Website: https://greedrl.github.io/ |