wav2vec2-1b-Yspeed

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9193
  • Cer: 22.7561

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
14.1833 0.2580 200 4.5491 97.4389
2.5916 0.5160 400 2.0400 48.7077
1.351 0.7741 600 1.9023 46.5695
1.0665 1.0321 800 1.2533 34.7039
0.8141 1.2901 1000 1.3127 32.2016
0.7672 1.5481 1200 1.3379 33.9814
0.6847 1.8062 1400 1.2278 32.0489
0.5985 2.0642 1600 1.1310 28.4657
0.5208 2.3222 1800 1.2212 29.4995
0.4664 2.5802 2000 1.0708 26.2512
0.4379 2.8383 2200 1.0705 26.3804
0.4332 3.0963 2400 1.0949 27.4260
0.3778 3.3543 2600 0.9809 25.3936
0.3273 3.6123 2800 1.0045 24.5418
0.3117 3.8703 3000 0.9171 23.0146
0.2586 4.1284 3200 0.9051 22.5329
0.2273 4.3864 3400 0.8966 22.3508
0.2169 4.6444 3600 0.9430 23.2202
0.2159 4.9024 3800 0.9193 22.7561

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.3.1.post100
  • Datasets 2.19.1
  • Tokenizers 0.20.1
Downloads last month
3
Safetensors
Model size
964M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Gummybear05/wav2vec2-1b-Yspeed

Finetuned
(97)
this model