xlm-roberta-base-finetuned-ner-lenerBr
This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: 0.1294
- Precision: 0.7397
- Recall: 0.9212
- F1: 0.8205
- Accuracy: 0.9703
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 245 | 0.1569 | 0.7358 | 0.7788 | 0.7567 | 0.9534 |
No log | 2.0 | 490 | 0.1310 | 0.6909 | 0.8927 | 0.7790 | 0.9632 |
0.1674 | 3.0 | 735 | 0.1148 | 0.7174 | 0.9119 | 0.8030 | 0.9677 |
0.1674 | 4.0 | 980 | 0.1550 | 0.7209 | 0.8979 | 0.7997 | 0.9658 |
0.0276 | 5.0 | 1225 | 0.1441 | 0.7183 | 0.9173 | 0.8057 | 0.9682 |
0.0276 | 6.0 | 1470 | 0.1482 | 0.7326 | 0.8752 | 0.7976 | 0.9665 |
0.0154 | 7.0 | 1715 | 0.1209 | 0.7418 | 0.9284 | 0.8247 | 0.9710 |
0.0154 | 8.0 | 1960 | 0.1266 | 0.7375 | 0.9243 | 0.8204 | 0.9708 |
0.0096 | 9.0 | 2205 | 0.1394 | 0.7356 | 0.9147 | 0.8154 | 0.9690 |
0.0096 | 10.0 | 2450 | 0.1294 | 0.7397 | 0.9212 | 0.8205 | 0.9703 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for GuiTap/xlm-roberta-base-finetuned-ner-lenerBr
Base model
FacebookAI/xlm-roberta-baseDataset used to train GuiTap/xlm-roberta-base-finetuned-ner-lenerBr
Evaluation results
- Precision on lener_brvalidation set self-reported0.740
- Recall on lener_brvalidation set self-reported0.921
- F1 on lener_brvalidation set self-reported0.821
- Accuracy on lener_brvalidation set self-reported0.970