MythoLogic-13b / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
7d9a220
|
raw
history blame
2.25 kB
---
license: other
language:
- en
---
**UPDATE:** There's a Llama 2 sequel now! [Check it out here!](https://huggingface.co/Gryphe/MythoLogic-L2-13b)
An experiment with gradient merges using [the following script](https://github.com/TehVenomm/LM_Transformers_BlockMerge), with [Chronos](https://huggingface.co/elinas/chronos-13b) as its primary model, augmented by [Hermes](https://huggingface.co/NousResearch/Nous-Hermes-13b) and [Wizard-Vicuna Uncensored](https://huggingface.co/TheBloke/Wizard-Vicuna-13B-Uncensored-HF).
Quantized models are available from TheBloke: [GGML](https://huggingface.co/TheBloke/MythoLogic-13B-GGML) - [GPTQ](https://huggingface.co/TheBloke/MythoLogic-13B-GPTQ) (You're the best!)
## Model details
Chronos is a wonderfully verbose model, though it definitely seems to lack in the logic department. Hermes and WizardLM have been merged gradually, primarily in the higher layers (10+) in an attempt to rectify some of this behaviour.
The main objective was to create an all-round model with improved story generation and roleplaying capabilities.
Below is an illustration to showcase a rough approximation of the gradients I used to create MythoLogic:
![](approximation.png)
## Prompt Format
This model primarily uses Alpaca formatting, so for optimal model performance, use:
```
<System prompt/Character Card>
### Instruction:
Your instruction or question here.
For roleplay purposes, I suggest the following - Write <CHAR NAME>'s next reply in a chat between <YOUR NAME> and <CHAR NAME>. Write a single reply only.
### Response:
```
---
license: other
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gryphe__MythoLogic-13b)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 47.23 |
| ARC (25-shot) | 58.45 |
| HellaSwag (10-shot) | 81.56 |
| MMLU (5-shot) | 49.36 |
| TruthfulQA (0-shot) | 49.47 |
| Winogrande (5-shot) | 75.61 |
| GSM8K (5-shot) | 8.64 |
| DROP (3-shot) | 7.53 |