File size: 8,285 Bytes
004e9e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
language:
- en
- multilingual
license: mit
tags:
- vision
- image-to-text
- image-captioning
- visual-question-answering
pipeline_tag: image-to-text
inference: false
datasets:
- Gregor/mblip-train
---
# mBLIP BLOOMZ-7B
This is the model checkpoint for our work [mBLIP: Efficient Bootstrapping of Multilingual Vision-LLMs](https://arxiv.org/abs/2307.06930).
## Model description
mBLIP is a [BLIP-2](https://arxiv.org/abs/2301.12597) model which consists of 3 sub-models: a Vision Transformer (ViT), a Query-Transformer (Q-Former) and a large language model (LLM).
The Q-Former and ViT have both been initialized by an English BLIP-2 checkpoint ([blip2-flan-t5-xl](https://huggingface.co/Gregor/mblip-bloomz-7b)) and then re-aligned
to the multilingual LLM ([bloomz-7b1](https://huggingface.co/bigscience/bloomz-7b1)) using a [multilingual task mixture](https://huggingface.co/datasets/Gregor/mblip-train).
<img src="https://github.com/gregor-ge/mBLIP/blob/main/architecture.png"
alt="The mBLIP architecture" width="600"/>
This allows the model to be used for tasks like:
- image captioning
- visual question answering (VQA)
in 96 languages.
#### Languages
mBLIP was trained on the following 96 languages:
`
af, am, ar, az, be, bg, bn, ca, ceb, cs, cy, da, de, el, en, eo, es, et, eu, fa, fi, fil, fr, ga, gd, gl, gu, ha, hi, ht, hu, hy, id, ig, is, it, iw, ja, jv, ka, kk, km, kn, ko, ku, ky, lb, lo, lt, lv, mg, mi, mk, ml, mn, mr, ms, mt, my, ne, nl, no, ny, pa, pl, ps, pt, ro, ru, sd, si, sk, sl, sm, sn, so, sq, sr, st, su, sv, sw, ta, te, tg, th, tr, uk, ur, uz, vi, xh, yi, yo, zh, zu
`
## Direct Use and Downstream Use
You can use the raw model for conditional text generation given an image and prompt text in a zero-shot setup or
alternatively finetune it for downstream applications.
We strongly recommend LoRA applied to the LLM when finetuning and to use bf16 as data type - standard fp16 can cause NaN loss.
See [our repository](https://github.com/gregor-ge/mBLIP) for the code used to train and finetune this model.
When using batched input, use left padding!
## Bias, Risks, Limitations, and Ethical Considerations
While mBLIP can work in theory with up to 100 languages, in practice, we expect best results when prompted in high-resource languages
like English, German, Spanish, etc.
mBLIP inherits the risk, limitations, and biases from the models used to initialize it.
mBLIP has not been tested in real world applications. It should not be directly deployed in any applications. Researchers should first carefully assess the safety and fairness of the model in relation to the specific context they’re being deployed within.
### How to use
For code examples, we refer to the BLIP-2 [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/blip-2#transformers.Blip2ForConditionalGeneration.forward.example).
#### Running the model on CPU
<details>
<summary> Click to expand </summary>
```python
import requests
from PIL import Image
from transformers import BlipProcessor, Blip2ForConditionalGeneration
processor = BlipProcessor.from_pretrained("Gregor/mblip-bloomz-7b")
model = Blip2ForConditionalGeneration.from_pretrained("Gregor/mblip-bloomz-7b")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "Describe the image in German."
inputs = processor(raw_image, question, return_tensors="pt")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
#### Running the model on GPU
##### In full precision
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Gregor/mblip-bloomz-7b")
model = Blip2ForConditionalGeneration.from_pretrained("Gregor/mblip-bloomz-7b", device_map="auto")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "Describe the image in German."
inputs = processor(raw_image, question, return_tensors="pt").to("cuda")
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
##### In half precision (`bfloat16`)
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Gregor/mblip-bloomz-7b")
model = Blip2ForConditionalGeneration.from_pretrained("Gregor/mblip-bloomz-7b", torch_dtype=torch.bfloat16, device_map="auto")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "Describe the image in German."
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.bfloat16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
##### In 8-bit precision (`int8`)
>**Important:** Paper results only use int8 for the LLM weights while this loads all weights in int8.
> We see that this gives slightly worse results but currently int8 for only some model parts is not supported by HuggingFace.
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate bitsandbytes
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Gregor/mblip-bloomz-7b")
model = Blip2ForConditionalGeneration.from_pretrained("Gregor/mblip-bloomz-7b", load_in_8bit=True, device_map="auto")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "Describe the image in German."
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.bfloat16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
##### In 4-bit precision (`int4`)
>**Important:** Paper results only use int4 for the LLM weights while this loads all weights in int8.
> We see that this gives slightly worse results but currently int4 for only some model parts is not supported by HuggingFace.
<details>
<summary> Click to expand </summary>
```python
# pip install accelerate bitsandbytes
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration
processor = Blip2Processor.from_pretrained("Gregor/mblip-bloomz-7b")
model = Blip2ForConditionalGeneration.from_pretrained("Gregor/mblip-bloomz-7b",
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=False,
bnb_4bit_compute_dtype=torch.bfloat16,
device_map="auto")
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
question = "Describe the image in German."
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.bfloat16)
out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))
```
</details>
## Citation
If you use our model, please cite the following:
```
@article{geigle2023mblip,
author = {Gregor Geigle and
Abhay Jain and
Radu Timofte and
Goran Glava\v{s}},
title = {mBLIP: Efficient Bootstrapping of Multilingual Vision-LLMs},
journal = {arXiv},
volume = {abs/2307.06930},
year = {2023},
url = {https://arxiv.org/abs/2307.06930},
eprinttype = {arXiv},
eprint = {2307.06930},
}
``` |