Edit model card

contrast_classifier_bio_bert

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1097
  • Accuracy: 0.9857

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0075 1.0 18 0.2757 0.9286
0.0024 2.0 36 0.5377 0.8429
0.0009 3.0 54 0.1979 0.9714
0.0006 4.0 72 0.1630 0.9714
0.0004 5.0 90 0.1114 0.9857
0.0004 6.0 108 0.1033 0.9857
0.0003 7.0 126 0.1036 0.9857
0.0003 8.0 144 0.1067 0.9857
0.0003 9.0 162 0.1095 0.9857
0.0003 10.0 180 0.1094 0.9857
0.0002 11.0 198 0.1096 0.9857
0.0002 12.0 216 0.1097 0.9857

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Granoladata/contrast_classifier_bio_bert

Finetuned
(60)
this model