Additional syntax proofreading
#1
by
kiliangoto
- opened
README.md
CHANGED
@@ -8,14 +8,16 @@ language:
|
|
8 |
- su
|
9 |
license: llama3
|
10 |
---
|
11 |
-
# Llama3 8B CPT Sahabat
|
12 |
|
13 |
-
|
14 |
|
15 |
-
Llama3 8B CPT Sahabat
|
|
|
|
|
16 |
|
17 |
-
- **Co-initiated by:** PT GoTo Gojek Tokopedia Tbk, Indosat Ooredoo Hutchison
|
18 |
- **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
|
|
|
19 |
- **Model type:** Decoder
|
20 |
- **Languages:** English, Indonesian, Javanese, Sundanese
|
21 |
- **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
|
@@ -23,12 +25,12 @@ Llama3 8B CPT Sahabat-AI v1 Instruct is an Indonesian-focused model which has be
|
|
23 |
## Model Details
|
24 |
|
25 |
### Model Description
|
26 |
-
We performed instruction tuning in Indonesian, Javanese, Sundanese as well as English on our [continued pre-trained Llama3 8B CPT Sahabat
|
27 |
|
28 |
For tokenisation, the model employs the default tokenizer used in Llama-3-8B. The model has a context length of 8192.
|
29 |
|
30 |
### Benchmark Performance
|
31 |
-
We evaluated Llama3 8B CPT Sahabat
|
32 |
|
33 |
#### General Language Capabilities
|
34 |
For the evaluation of general language capabilities, we employed the
|
@@ -37,150 +39,22 @@ For the evaluation of general language capabilities, we employed the
|
|
37 |
- We also added support for Javanese and Sundanese for the BHASA tasks whenever applicable
|
38 |
- [IndoMMLU](https://arxiv.org/pdf/2310.04928)
|
39 |
- These tasks include examination questions on Humanities, Indonesian language, Local languages and cultures, Social science and STEM across primary, middle, and high school levels.
|
40 |
-
- and the
|
41 |
-
- These tasks consist of [IFEval, BBH, Math Lvl 5, GPQA, MuSR, and MMLU-PRO.](https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about)
|
42 |
-
- **Caveat**: Our results differ from the HuggingFace LLM Leaderboard because we have used [VLLM](https://docs.vllm.ai/en/latest/) as our inference platform. VLLM caps the context size at **4096 tokens** while HuggingFace was set to **8192 tokens**.
|
43 |
|
44 |
Note: SEA HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.
|
45 |
|
46 |
The evaluation was done **zero-shot** with native prompts on a sample of 100-1000 instances for each dataset.
|
47 |
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
As this dataset was in English, the linguists and native speakers in the team worked together to filter, localize and translate the dataset into the respective target languages to ensure that the examples remained reasonable, meaningful and natural.
|
53 |
-
|
54 |
-
**IFEval**
|
55 |
-
|
56 |
-
IFEval evaluates a model's ability to adhere to constraints provided in the prompt, for example beginning a response with a specific word/phrase or answering with a certain number of sections. Additionally, accuracy is normalized by the proportion of responses in the correct language (if the model performs the task correctly but responds in the wrong language, it is judged to have failed the task).
|
57 |
-
|
58 |
-
*Note*: IFEval was only used on Bahasa Indonesia. We are currently working on adding it for Javanese and Sundanese for our upcoming releases.
|
59 |
-
|
60 |
-
#### Results
|
61 |
-
|
62 |
-
#### Indonesian Results
|
63 |
-
|
64 |
-
#### SEA HELM (also known as BHASA)
|
65 |
-
<table style="border-collapse: collapse; width: 100%; font-size: 10px">
|
66 |
-
<tr>
|
67 |
-
<th style="border: 2px solid black; padding: 8px; font-weight: bold;">Language / Model Name [Instruct]</th>
|
68 |
-
<th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
|
69 |
-
<th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
|
70 |
-
<th style="border: 1px solid gray; padding: 8px;">Llama-3-8B</th>
|
71 |
-
<th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
|
72 |
-
<th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
|
73 |
-
<th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
|
74 |
-
<th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
|
75 |
-
<th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
|
76 |
-
</tr>
|
77 |
-
<tr>
|
78 |
-
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Overall (Bahasa Indonesia + Javanese + Sundanese)</td>
|
79 |
-
<td style="border: 1px solid gray; padding: 8px;">36.963</td>
|
80 |
-
<td style="border: 1px solid gray; padding: 8px;">42.988</td>
|
81 |
-
<td style="border: 1px solid gray; padding: 8px;">37.805</td>
|
82 |
-
<td style="border: 1px solid gray; padding: 8px;">45.866</td>
|
83 |
-
<td style="border: 1px solid gray; padding: 8px;">46.880</td>
|
84 |
-
<td style="border: 1px solid gray; padding: 8px;">56.359</td>
|
85 |
-
<td style="border: 2px solid black; padding: 8px;">53.725</td>
|
86 |
-
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">61.169</td>
|
87 |
-
</tr>
|
88 |
-
<tr>
|
89 |
-
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Bahasa Indonesia</td>
|
90 |
-
<td style="border: 1px solid gray; padding: 8px;">46.760</td>
|
91 |
-
<td style="border: 1px solid gray; padding: 8px;">60.372</td>
|
92 |
-
<td style="border: 1px solid gray; padding: 8px;">42.022</td>
|
93 |
-
<td style="border: 1px solid gray; padding: 8px;">51.944</td>
|
94 |
-
<td style="border: 1px solid gray; padding: 8px;">54.579</td>
|
95 |
-
<td style="border: 1px solid gray; padding: 8px;">63.394</td>
|
96 |
-
<td style="border: 2px solid black; padding: 8px;">57.221</td>
|
97 |
-
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">64.154</td>
|
98 |
-
</tr>
|
99 |
-
<tr>
|
100 |
-
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Javanese</td>
|
101 |
-
<td style="border: 1px solid gray; padding: 8px;">33.956</td>
|
102 |
-
<td style="border: 1px solid gray; padding: 8px;">40.625</td>
|
103 |
-
<td style="border: 1px solid gray; padding: 8px;">41.739</td>
|
104 |
-
<td style="border: 1px solid gray; padding: 8px;">47.587</td>
|
105 |
-
<td style="border: 1px solid gray; padding: 8px;">48.012</td>
|
106 |
-
<td style="border: 1px solid gray; padding: 8px;">56.468</td>
|
107 |
-
<td style="border: 2px solid black; padding: 8px;">56.460</td>
|
108 |
-
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">64.439</td>
|
109 |
-
</tr>
|
110 |
-
<tr>
|
111 |
-
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Sundanese</td>
|
112 |
-
<td style="border: 1px solid gray; padding: 8px;">30.173</td>
|
113 |
-
<td style="border: 1px solid gray; padding: 8px;">27.969</td>
|
114 |
-
<td style="border: 1px solid gray; padding: 8px;">29.654</td>
|
115 |
-
<td style="border: 1px solid gray; padding: 8px;">38.068</td>
|
116 |
-
<td style="border: 1px solid gray; padding: 8px;">38.050</td>
|
117 |
-
<td style="border: 1px solid gray; padding: 8px;">49.216</td>
|
118 |
-
<td style="border: 2px solid black; padding: 8px;">47.495</td>
|
119 |
-
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">54.913</td>
|
120 |
-
</tr>
|
121 |
-
</table>
|
122 |
-
|
123 |
-
#### IndoMMLU
|
124 |
-
<table style="border-collapse: collapse; width: 100%; font-size: 10px">
|
125 |
-
<tr>
|
126 |
-
<th style="border: 2px solid black; padding: 8px; font-weight: bold;">Model Name [Instruct]</th>
|
127 |
-
<th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
|
128 |
-
<th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
|
129 |
-
<th style="border: 1px solid gray; padding: 8px;">Meta-Llama-3-8B</th>
|
130 |
-
<th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
|
131 |
-
<th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
|
132 |
-
<th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
|
133 |
-
<th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
|
134 |
-
<th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
|
135 |
-
</tr>
|
136 |
-
<tr>
|
137 |
-
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Overall Results</td>
|
138 |
-
<td style="border: 1px solid gray; padding: 8px;">53.0%</td>
|
139 |
-
<td style="border: 1px solid gray; padding: 8px;">56.0%</td>
|
140 |
-
<td style="border: 1px solid gray; padding: 8px;">51.9%</td>
|
141 |
-
<td style="border: 1px solid gray; padding: 8px;">53.8%</td>
|
142 |
-
<td style="border: 1px solid gray; padding: 8px;">54.4%</td>
|
143 |
-
<td style="border: 1px solid gray; padding: 8px;">61.4%</td>
|
144 |
-
<td style="border: 2px solid black; padding: 8px;">55.6%</td>
|
145 |
-
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">62.6%</td>
|
146 |
-
</tr>
|
147 |
-
</table>
|
148 |
-
|
149 |
-
#### English Results
|
150 |
-
<table style="border-collapse: collapse; width: 100%; font-size: 10px">
|
151 |
-
<tr>
|
152 |
-
<th style="border: 2px solid black; padding: 8px;">Model Name [Instruct]</th>
|
153 |
-
<th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
|
154 |
-
<th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
|
155 |
-
<th style="border: 1px solid gray; padding: 8px;">Llama-3-8B</th>
|
156 |
-
<th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
|
157 |
-
<th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
|
158 |
-
<th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
|
159 |
-
<th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
|
160 |
-
<th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
|
161 |
-
</tr>
|
162 |
-
<tr>
|
163 |
-
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Average</td>
|
164 |
-
<td style="border: 1px solid gray; padding: 8px;">24.48</td>
|
165 |
-
<td style="border: 1px solid gray; padding: 8px;">27.75</td>
|
166 |
-
<td style="border: 1px solid gray; padding: 8px;">23.91</td>
|
167 |
-
<td style="border: 1px solid gray; padding: 8px;">27.98</td>
|
168 |
-
<td style="border: 1px solid gray; padding: 8px;">24.52</td>
|
169 |
-
<td style="border: 1px solid gray; padding: 8px;">26.44</td>
|
170 |
-
<td style="border: 2px solid black; padding: 8px;">24.43</td>
|
171 |
-
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">33.67</td>
|
172 |
-
</tr>
|
173 |
-
</table>
|
174 |
-
|
175 |
-
|
176 |
-
Llama3 8B CPT Sahabat-AI v1 Instruct can be run using the 🤗 Transformers library
|
177 |
```python
|
178 |
-
# Please use transformers==4.45.
|
179 |
|
180 |
-
import torch
|
181 |
import transformers
|
|
|
182 |
|
183 |
-
model_id =
|
184 |
|
185 |
pipeline = transformers.pipeline(
|
186 |
"text-generation",
|
@@ -188,36 +62,13 @@ pipeline = transformers.pipeline(
|
|
188 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
189 |
device_map="auto",
|
190 |
)
|
191 |
-
|
192 |
-
terminators = [
|
193 |
-
pipeline.tokenizer.eos_token_id,
|
194 |
-
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
195 |
-
]
|
196 |
-
|
197 |
-
# Javanese
|
198 |
messages = [
|
199 |
-
|
200 |
-
{"role": "user", "content": "Sopo wae sing ana ing Punakawan?"}
|
201 |
]
|
202 |
|
203 |
outputs = pipeline(
|
204 |
messages,
|
205 |
max_new_tokens=256,
|
206 |
-
eos_token_id=terminators,
|
207 |
-
)
|
208 |
-
print(outputs[0]["generated_text"][-1])
|
209 |
-
|
210 |
-
|
211 |
-
# Sundanese
|
212 |
-
messages = [
|
213 |
-
{"role": "system", "content": "You are a helpful assistant"},
|
214 |
-
{"role": "user", "content": "Kumaha caritana si Kabayan?"},
|
215 |
-
]
|
216 |
-
|
217 |
-
outputs = pipeline(
|
218 |
-
messages,
|
219 |
-
max_new_tokens=256,
|
220 |
-
eos_token_id=terminators,
|
221 |
)
|
222 |
print(outputs[0]["generated_text"][-1])
|
223 |
```
|
@@ -228,38 +79,23 @@ It is important for users to be aware that our model exhibits certain limitation
|
|
228 |
## Limitations
|
229 |
### Safety
|
230 |
|
231 |
-
Current Sahabat
|
232 |
|
233 |
## Technical Specifications
|
234 |
### Fine-Tuning Details
|
235 |
-
Llama3 8B CPT Sahabat
|
236 |
|
237 |
## Data
|
238 |
-
Llama3 8B CPT Sahabat
|
239 |
-
|
240 |
-
## Call for Collaboration
|
241 |
-
Sahabat-AI (Indonesian language for “close friends”) a **local open source Large Language Model (LLM) ecosystem in Indonesian language**, co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
|
242 |
-
Sahabat-AI ecosystem aims to empower Indonesians who want to develop AI-based services and applications using Bahasa Indonesia and its various local dialects.
|
243 |
-
|
244 |
-
We are supported by research centers and global tech experts such as AI Singapore and Tech Mahendra to train the model to gain general language understanding.
|
245 |
|
246 |
-
|
|
|
247 |
|
248 |
-
|
249 |
-
Your collaborations can involve:
|
250 |
-
- Identifying and reporting technical issues
|
251 |
-
- Sharing pre-training, instruction, and preference data
|
252 |
-
- Improving documentation usability
|
253 |
-
- Proposing and implementing new model evaluation tasks and metrics
|
254 |
-
|
255 |
-
Join us in shaping the future of Sahabat-AI by sharing your expertise and insights to make these models more accessible, accurate, and versatile.
|
256 |
-
|
257 |
-
You can contribute your ideas through [this form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
|
258 |
-
|
259 |
-
## The Development Team (in ascending alphabetical order)
|
260 |
|
261 |
### AI Singapore
|
262 |
Chan Adwin<br>
|
|
|
263 |
Cheng Nicholas<br>
|
264 |
Choa Esther<br>
|
265 |
Huang Yuli<br>
|
@@ -290,7 +126,6 @@ Yong Xianbin<br>
|
|
290 |
|
291 |
### PT GoTo Gojek Tokopedia Tbk
|
292 |
Anissa Dininta<br>
|
293 |
-
Chau Shiau Ching<br>
|
294 |
Choiri Hendra Hadhil<br>
|
295 |
Goel Priyank<br>
|
296 |
Saini Ajay Kumar<br>
|
@@ -300,16 +135,16 @@ Tep Kilian Rithi<br>
|
|
300 |
Tiwari Anupam<br>
|
301 |
Widjojo Daniel<br>
|
302 |
|
303 |
-
|
304 |
|
305 |
[AI Singapore](https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
|
306 |
|
307 |
-
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.
|
308 |
|
309 |
|
310 |
## Contact
|
311 |
|
312 |
-
For more info, please contact us using this [Sahabat
|
313 |
|
314 |
## Disclaimer
|
315 |
|
|
|
8 |
- su
|
9 |
license: llama3
|
10 |
---
|
11 |
+
# Llama3 8B CPT Sahabat AI v1 Instruct
|
12 |
|
13 |
+
Sahabat AI is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian languages.
|
14 |
|
15 |
+
Llama3 8B CPT Sahabat AI v1 Instruct is an Indonesian-focused model which has been fine-tuned with around **448,000 Indonesian instruction-completion pairs** alongside an Indonesian-dialect pool consisting of **96,000 instruction-completion pairs in Javanese** and **98,000 instruction-completion pairs in Sundanese**. Additionally, we also included **129,000 instruction-completion pairs in English**.
|
16 |
+
|
17 |
+
Sahabat is Indonesian for "Close Friends."
|
18 |
|
|
|
19 |
- **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
|
20 |
+
- **Funded by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
|
21 |
- **Model type:** Decoder
|
22 |
- **Languages:** English, Indonesian, Javanese, Sundanese
|
23 |
- **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
|
|
|
25 |
## Model Details
|
26 |
|
27 |
### Model Description
|
28 |
+
We performed instruction tuning in Indonesian, Javanese, Sundanese as well as English on our [continued pre-trained Llama3 8B CPT Sahabat AI v1 base](https://huggingface.co/GoToCompany/llama3-8b-cpt-sahabatai-v1-base), a decoder model using the Llama3 architecture, to create Llama3 8B CPT Sahabat AI v1 Instruct.
|
29 |
|
30 |
For tokenisation, the model employs the default tokenizer used in Llama-3-8B. The model has a context length of 8192.
|
31 |
|
32 |
### Benchmark Performance
|
33 |
+
We evaluated Llama3 8B CPT Sahabat AI v1 Instruct on general language capabilities.
|
34 |
|
35 |
#### General Language Capabilities
|
36 |
For the evaluation of general language capabilities, we employed the
|
|
|
39 |
- We also added support for Javanese and Sundanese for the BHASA tasks whenever applicable
|
40 |
- [IndoMMLU](https://arxiv.org/pdf/2310.04928)
|
41 |
- These tasks include examination questions on Humanities, Indonesian language, Local languages and cultures, Social science and STEM across primary, middle, and high school levels.
|
42 |
+
- and the well known [English MMLU](https://arxiv.org/pdf/2009.03300)
|
|
|
|
|
43 |
|
44 |
Note: SEA HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.
|
45 |
|
46 |
The evaluation was done **zero-shot** with native prompts on a sample of 100-1000 instances for each dataset.
|
47 |
|
48 |
|
49 |
+
### Usage
|
50 |
+
Llama3 8B CPT Sahabat AI v1 Instruct can be run using the 🤗 Transformers library
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
```python
|
52 |
+
# Please use transformers==4.45.2
|
53 |
|
|
|
54 |
import transformers
|
55 |
+
import torch
|
56 |
|
57 |
+
model_id = # PLACEHOLDER
|
58 |
|
59 |
pipeline = transformers.pipeline(
|
60 |
"text-generation",
|
|
|
62 |
model_kwargs={"torch_dtype": torch.bfloat16},
|
63 |
device_map="auto",
|
64 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
messages = [
|
66 |
+
{"role": "user", "content": "Apa sentimen dari kalimat berikut ini?\nKalimat: Buku ini sangat membosankan.\nJawaban: "},
|
|
|
67 |
]
|
68 |
|
69 |
outputs = pipeline(
|
70 |
messages,
|
71 |
max_new_tokens=256,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
)
|
73 |
print(outputs[0]["generated_text"][-1])
|
74 |
```
|
|
|
79 |
## Limitations
|
80 |
### Safety
|
81 |
|
82 |
+
Current Sahabat models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
|
83 |
|
84 |
## Technical Specifications
|
85 |
### Fine-Tuning Details
|
86 |
+
Llama3 8B CPT Sahabat AI v1 Instruct was built using a combination of a full parameter fine-tune, on-policy alignment, and model merges of the best performing checkpoints. The training process for fine-tuning was approximately 4 hours, with alignment taking 2 hours, both on 8x H100-80GB GPUs.
|
87 |
|
88 |
## Data
|
89 |
+
Llama3 8B CPT Sahabat AI v1 Instruct was trained on a wide range of synthetic instructions, alongside publicly available instructions hand-curated by the team with the assistance of native speakers. In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
## Call for Contributions
|
92 |
+
We encourage researchers, developers, and language enthusiasts to actively contribute to the enhancement and expansion of Sahabat. Contributions can involve identifying and reporting bugs, sharing pre-training, instruction, and preference data, improving documentation usability, proposing and implementing new model evaluation tasks and metrics, or training versions of the model in additional Indonesian languages. Join us in shaping the future of Sahabat by sharing your expertise and insights to make these models more accessible, accurate, and versatile.
|
93 |
|
94 |
+
## The Team (by ascending alphabetical order)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
### AI Singapore
|
97 |
Chan Adwin<br>
|
98 |
+
Chau Shiau Ching<br>
|
99 |
Cheng Nicholas<br>
|
100 |
Choa Esther<br>
|
101 |
Huang Yuli<br>
|
|
|
126 |
|
127 |
### PT GoTo Gojek Tokopedia Tbk
|
128 |
Anissa Dininta<br>
|
|
|
129 |
Choiri Hendra Hadhil<br>
|
130 |
Goel Priyank<br>
|
131 |
Saini Ajay Kumar<br>
|
|
|
135 |
Tiwari Anupam<br>
|
136 |
Widjojo Daniel<br>
|
137 |
|
138 |
+
<!--## Acknowledgements
|
139 |
|
140 |
[AI Singapore](https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
|
141 |
|
142 |
+
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore. -->
|
143 |
|
144 |
|
145 |
## Contact
|
146 |
|
147 |
+
For more info, please contact us using this [Sahabat Inquiry Form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
|
148 |
|
149 |
## Disclaimer
|
150 |
|