Safetensors
llama

Additional syntax proofreading

#1
by kiliangoto - opened
Files changed (1) hide show
  1. README.md +25 -190
README.md CHANGED
@@ -8,14 +8,16 @@ language:
8
  - su
9
  license: llama3
10
  ---
11
- # Llama3 8B CPT Sahabat-AI v1 Instruct
12
 
13
- **Sahabat-AI** (Indonesian language for “close friends”) is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian language and its various dialects. Sahabat-AI ecosystem is co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
14
 
15
- Llama3 8B CPT Sahabat-AI v1 Instruct is an Indonesian-focused model which has been fine-tuned with around **448,000 Indonesian instruction-completion pairs** alongside an Indonesian-dialect pool consisting of **96,000 instruction-completion pairs in Javanese** and **98,000 instruction-completion pairs in Sundanese**. Additionally, we added a pool of **129,000 instruction-completion pairs in English**.
 
 
16
 
17
- - **Co-initiated by:** PT GoTo Gojek Tokopedia Tbk, Indosat Ooredoo Hutchison
18
  - **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
 
19
  - **Model type:** Decoder
20
  - **Languages:** English, Indonesian, Javanese, Sundanese
21
  - **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
@@ -23,12 +25,12 @@ Llama3 8B CPT Sahabat-AI v1 Instruct is an Indonesian-focused model which has be
23
  ## Model Details
24
 
25
  ### Model Description
26
- We performed instruction tuning in Indonesian, Javanese, Sundanese as well as English on our [continued pre-trained Llama3 8B CPT Sahabat-AI v1 base](https://huggingface.co/GoToCompany/llama3-8b-cpt-sahabatai-v1-base), a decoder model using the Llama3 architecture, to create Llama3 8B CPT Sahabat-AI v1 Instruct.
27
 
28
  For tokenisation, the model employs the default tokenizer used in Llama-3-8B. The model has a context length of 8192.
29
 
30
  ### Benchmark Performance
31
- We evaluated Llama3 8B CPT Sahabat-AI V1 Instruct on both general language capabilities and instruction-following capabilities.
32
 
33
  #### General Language Capabilities
34
  For the evaluation of general language capabilities, we employed the
@@ -37,150 +39,22 @@ For the evaluation of general language capabilities, we employed the
37
  - We also added support for Javanese and Sundanese for the BHASA tasks whenever applicable
38
  - [IndoMMLU](https://arxiv.org/pdf/2310.04928)
39
  - These tasks include examination questions on Humanities, Indonesian language, Local languages and cultures, Social science and STEM across primary, middle, and high school levels.
40
- - and the common English tasks from the [HuggingFace LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard).
41
- - These tasks consist of [IFEval, BBH, Math Lvl 5, GPQA, MuSR, and MMLU-PRO.](https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about)
42
- - **Caveat**: Our results differ from the HuggingFace LLM Leaderboard because we have used [VLLM](https://docs.vllm.ai/en/latest/) as our inference platform. VLLM caps the context size at **4096 tokens** while HuggingFace was set to **8192 tokens**.
43
 
44
  Note: SEA HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.
45
 
46
  The evaluation was done **zero-shot** with native prompts on a sample of 100-1000 instances for each dataset.
47
 
48
 
49
- #### Instruction-following Capabilities
50
- Since Llama3 8B CPT Sahabat-AI v1 Instruct is an instruction-following model, we also evaluated it on instruction-following capabilities with the [IFEval](https://arxiv.org/abs/2311.07911) dataset.
51
-
52
- As this dataset was in English, the linguists and native speakers in the team worked together to filter, localize and translate the dataset into the respective target languages to ensure that the examples remained reasonable, meaningful and natural.
53
-
54
- **IFEval**
55
-
56
- IFEval evaluates a model's ability to adhere to constraints provided in the prompt, for example beginning a response with a specific word/phrase or answering with a certain number of sections. Additionally, accuracy is normalized by the proportion of responses in the correct language (if the model performs the task correctly but responds in the wrong language, it is judged to have failed the task).
57
-
58
- *Note*: IFEval was only used on Bahasa Indonesia. We are currently working on adding it for Javanese and Sundanese for our upcoming releases.
59
-
60
- #### Results
61
-
62
- #### Indonesian Results
63
-
64
- #### SEA HELM (also known as BHASA)
65
- <table style="border-collapse: collapse; width: 100%; font-size: 10px">
66
- <tr>
67
- <th style="border: 2px solid black; padding: 8px; font-weight: bold;">Language / Model Name [Instruct]</th>
68
- <th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
69
- <th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
70
- <th style="border: 1px solid gray; padding: 8px;">Llama-3-8B</th>
71
- <th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
72
- <th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
73
- <th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
74
- <th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
75
- <th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
76
- </tr>
77
- <tr>
78
- <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Overall (Bahasa Indonesia + Javanese + Sundanese)</td>
79
- <td style="border: 1px solid gray; padding: 8px;">36.963</td>
80
- <td style="border: 1px solid gray; padding: 8px;">42.988</td>
81
- <td style="border: 1px solid gray; padding: 8px;">37.805</td>
82
- <td style="border: 1px solid gray; padding: 8px;">45.866</td>
83
- <td style="border: 1px solid gray; padding: 8px;">46.880</td>
84
- <td style="border: 1px solid gray; padding: 8px;">56.359</td>
85
- <td style="border: 2px solid black; padding: 8px;">53.725</td>
86
- <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">61.169</td>
87
- </tr>
88
- <tr>
89
- <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Bahasa Indonesia</td>
90
- <td style="border: 1px solid gray; padding: 8px;">46.760</td>
91
- <td style="border: 1px solid gray; padding: 8px;">60.372</td>
92
- <td style="border: 1px solid gray; padding: 8px;">42.022</td>
93
- <td style="border: 1px solid gray; padding: 8px;">51.944</td>
94
- <td style="border: 1px solid gray; padding: 8px;">54.579</td>
95
- <td style="border: 1px solid gray; padding: 8px;">63.394</td>
96
- <td style="border: 2px solid black; padding: 8px;">57.221</td>
97
- <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">64.154</td>
98
- </tr>
99
- <tr>
100
- <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Javanese</td>
101
- <td style="border: 1px solid gray; padding: 8px;">33.956</td>
102
- <td style="border: 1px solid gray; padding: 8px;">40.625</td>
103
- <td style="border: 1px solid gray; padding: 8px;">41.739</td>
104
- <td style="border: 1px solid gray; padding: 8px;">47.587</td>
105
- <td style="border: 1px solid gray; padding: 8px;">48.012</td>
106
- <td style="border: 1px solid gray; padding: 8px;">56.468</td>
107
- <td style="border: 2px solid black; padding: 8px;">56.460</td>
108
- <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">64.439</td>
109
- </tr>
110
- <tr>
111
- <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Sundanese</td>
112
- <td style="border: 1px solid gray; padding: 8px;">30.173</td>
113
- <td style="border: 1px solid gray; padding: 8px;">27.969</td>
114
- <td style="border: 1px solid gray; padding: 8px;">29.654</td>
115
- <td style="border: 1px solid gray; padding: 8px;">38.068</td>
116
- <td style="border: 1px solid gray; padding: 8px;">38.050</td>
117
- <td style="border: 1px solid gray; padding: 8px;">49.216</td>
118
- <td style="border: 2px solid black; padding: 8px;">47.495</td>
119
- <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">54.913</td>
120
- </tr>
121
- </table>
122
-
123
- #### IndoMMLU
124
- <table style="border-collapse: collapse; width: 100%; font-size: 10px">
125
- <tr>
126
- <th style="border: 2px solid black; padding: 8px; font-weight: bold;">Model Name [Instruct]</th>
127
- <th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
128
- <th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
129
- <th style="border: 1px solid gray; padding: 8px;">Meta-Llama-3-8B</th>
130
- <th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
131
- <th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
132
- <th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
133
- <th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
134
- <th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
135
- </tr>
136
- <tr>
137
- <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Overall Results</td>
138
- <td style="border: 1px solid gray; padding: 8px;">53.0%</td>
139
- <td style="border: 1px solid gray; padding: 8px;">56.0%</td>
140
- <td style="border: 1px solid gray; padding: 8px;">51.9%</td>
141
- <td style="border: 1px solid gray; padding: 8px;">53.8%</td>
142
- <td style="border: 1px solid gray; padding: 8px;">54.4%</td>
143
- <td style="border: 1px solid gray; padding: 8px;">61.4%</td>
144
- <td style="border: 2px solid black; padding: 8px;">55.6%</td>
145
- <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">62.6%</td>
146
- </tr>
147
- </table>
148
-
149
- #### English Results
150
- <table style="border-collapse: collapse; width: 100%; font-size: 10px">
151
- <tr>
152
- <th style="border: 2px solid black; padding: 8px;">Model Name [Instruct]</th>
153
- <th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
154
- <th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
155
- <th style="border: 1px solid gray; padding: 8px;">Llama-3-8B</th>
156
- <th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
157
- <th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
158
- <th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
159
- <th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
160
- <th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
161
- </tr>
162
- <tr>
163
- <td style="border: 2px solid black; padding: 8px; font-weight: bold;">Average</td>
164
- <td style="border: 1px solid gray; padding: 8px;">24.48</td>
165
- <td style="border: 1px solid gray; padding: 8px;">27.75</td>
166
- <td style="border: 1px solid gray; padding: 8px;">23.91</td>
167
- <td style="border: 1px solid gray; padding: 8px;">27.98</td>
168
- <td style="border: 1px solid gray; padding: 8px;">24.52</td>
169
- <td style="border: 1px solid gray; padding: 8px;">26.44</td>
170
- <td style="border: 2px solid black; padding: 8px;">24.43</td>
171
- <td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">33.67</td>
172
- </tr>
173
- </table>
174
-
175
-
176
- Llama3 8B CPT Sahabat-AI v1 Instruct can be run using the 🤗 Transformers library
177
  ```python
178
- # Please use transformers==4.45.0
179
 
180
- import torch
181
  import transformers
 
182
 
183
- model_id = "GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct"
184
 
185
  pipeline = transformers.pipeline(
186
  "text-generation",
@@ -188,36 +62,13 @@ pipeline = transformers.pipeline(
188
  model_kwargs={"torch_dtype": torch.bfloat16},
189
  device_map="auto",
190
  )
191
-
192
- terminators = [
193
- pipeline.tokenizer.eos_token_id,
194
- pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
195
- ]
196
-
197
- # Javanese
198
  messages = [
199
- {"role": "system", "content": "You are a helpful assistant"},
200
- {"role": "user", "content": "Sopo wae sing ana ing Punakawan?"}
201
  ]
202
 
203
  outputs = pipeline(
204
  messages,
205
  max_new_tokens=256,
206
- eos_token_id=terminators,
207
- )
208
- print(outputs[0]["generated_text"][-1])
209
-
210
-
211
- # Sundanese
212
- messages = [
213
- {"role": "system", "content": "You are a helpful assistant"},
214
- {"role": "user", "content": "Kumaha caritana si Kabayan?"},
215
- ]
216
-
217
- outputs = pipeline(
218
- messages,
219
- max_new_tokens=256,
220
- eos_token_id=terminators,
221
  )
222
  print(outputs[0]["generated_text"][-1])
223
  ```
@@ -228,38 +79,23 @@ It is important for users to be aware that our model exhibits certain limitation
228
  ## Limitations
229
  ### Safety
230
 
231
- Current Sahabat-AI models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
232
 
233
  ## Technical Specifications
234
  ### Fine-Tuning Details
235
- Llama3 8B CPT Sahabat-AI v1 Instruct was built using a combination of a full parameter fine-tune, on-policy alignment, and model merges of the best performing checkpoints. The training process for fine-tuning was approximately 4 hours, with alignment taking 2 hours, both on 8x H100-80GB GPUs.
236
 
237
  ## Data
238
- Llama3 8B CPT Sahabat-AI v1 Instruct was trained on a wide range of synthetic instructions, alongside publicly available instructions hand-curated by the team with the assistance of native speakers. In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.
239
-
240
- ## Call for Collaboration
241
- Sahabat-AI (Indonesian language for “close friends”) a **local open source Large Language Model (LLM) ecosystem in Indonesian language**, co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
242
- Sahabat-AI ecosystem aims to empower Indonesians who want to develop AI-based services and applications using Bahasa Indonesia and its various local dialects.
243
-
244
- We are supported by research centers and global tech experts such as AI Singapore and Tech Mahendra to train the model to gain general language understanding.
245
 
246
- We also collaborate with key top Indonesia universities such as University of Indonesia, Gadjah Mada University, Bogor Institute of Agriculture, Bandung Institute of Technology, including top Indonesia media groups, such as Kompas Gramedia Group and Republika to train and enrich the model in Bahasa Indonesia, ensuring optimum provision of local context and cultural relevance.
 
247
 
248
- We would like to invite **researchers, developers, and language enthusiasts** to actively contribute to the enhancement and expansion of Sahabat-AI.
249
- Your collaborations can involve:
250
- - Identifying and reporting technical issues
251
- - Sharing pre-training, instruction, and preference data
252
- - Improving documentation usability
253
- - Proposing and implementing new model evaluation tasks and metrics
254
-
255
- Join us in shaping the future of Sahabat-AI by sharing your expertise and insights to make these models more accessible, accurate, and versatile.
256
-
257
- You can contribute your ideas through [this form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
258
-
259
- ## The Development Team (in ascending alphabetical order)
260
 
261
  ### AI Singapore
262
  Chan Adwin<br>
 
263
  Cheng Nicholas<br>
264
  Choa Esther<br>
265
  Huang Yuli<br>
@@ -290,7 +126,6 @@ Yong Xianbin<br>
290
 
291
  ### PT GoTo Gojek Tokopedia Tbk
292
  Anissa Dininta<br>
293
- Chau Shiau Ching<br>
294
  Choiri Hendra Hadhil<br>
295
  Goel Priyank<br>
296
  Saini Ajay Kumar<br>
@@ -300,16 +135,16 @@ Tep Kilian Rithi<br>
300
  Tiwari Anupam<br>
301
  Widjojo Daniel<br>
302
 
303
- ## Acknowledgements
304
 
305
  [AI Singapore](​​https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
306
 
307
- Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore.
308
 
309
 
310
  ## Contact
311
 
312
- For more info, please contact us using this [Sahabat-AI Inquiry Form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
313
 
314
  ## Disclaimer
315
 
 
8
  - su
9
  license: llama3
10
  ---
11
+ # Llama3 8B CPT Sahabat AI v1 Instruct
12
 
13
+ Sahabat AI is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian languages.
14
 
15
+ Llama3 8B CPT Sahabat AI v1 Instruct is an Indonesian-focused model which has been fine-tuned with around **448,000 Indonesian instruction-completion pairs** alongside an Indonesian-dialect pool consisting of **96,000 instruction-completion pairs in Javanese** and **98,000 instruction-completion pairs in Sundanese**. Additionally, we also included **129,000 instruction-completion pairs in English**.
16
+
17
+ Sahabat is Indonesian for "Close Friends."
18
 
 
19
  - **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
20
+ - **Funded by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
21
  - **Model type:** Decoder
22
  - **Languages:** English, Indonesian, Javanese, Sundanese
23
  - **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
 
25
  ## Model Details
26
 
27
  ### Model Description
28
+ We performed instruction tuning in Indonesian, Javanese, Sundanese as well as English on our [continued pre-trained Llama3 8B CPT Sahabat AI v1 base](https://huggingface.co/GoToCompany/llama3-8b-cpt-sahabatai-v1-base), a decoder model using the Llama3 architecture, to create Llama3 8B CPT Sahabat AI v1 Instruct.
29
 
30
  For tokenisation, the model employs the default tokenizer used in Llama-3-8B. The model has a context length of 8192.
31
 
32
  ### Benchmark Performance
33
+ We evaluated Llama3 8B CPT Sahabat AI v1 Instruct on general language capabilities.
34
 
35
  #### General Language Capabilities
36
  For the evaluation of general language capabilities, we employed the
 
39
  - We also added support for Javanese and Sundanese for the BHASA tasks whenever applicable
40
  - [IndoMMLU](https://arxiv.org/pdf/2310.04928)
41
  - These tasks include examination questions on Humanities, Indonesian language, Local languages and cultures, Social science and STEM across primary, middle, and high school levels.
42
+ - and the well known [English MMLU](https://arxiv.org/pdf/2009.03300)
 
 
43
 
44
  Note: SEA HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.
45
 
46
  The evaluation was done **zero-shot** with native prompts on a sample of 100-1000 instances for each dataset.
47
 
48
 
49
+ ### Usage
50
+ Llama3 8B CPT Sahabat AI v1 Instruct can be run using the 🤗 Transformers library
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  ```python
52
+ # Please use transformers==4.45.2
53
 
 
54
  import transformers
55
+ import torch
56
 
57
+ model_id = # PLACEHOLDER
58
 
59
  pipeline = transformers.pipeline(
60
  "text-generation",
 
62
  model_kwargs={"torch_dtype": torch.bfloat16},
63
  device_map="auto",
64
  )
 
 
 
 
 
 
 
65
  messages = [
66
+ {"role": "user", "content": "Apa sentimen dari kalimat berikut ini?\nKalimat: Buku ini sangat membosankan.\nJawaban: "},
 
67
  ]
68
 
69
  outputs = pipeline(
70
  messages,
71
  max_new_tokens=256,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  )
73
  print(outputs[0]["generated_text"][-1])
74
  ```
 
79
  ## Limitations
80
  ### Safety
81
 
82
+ Current Sahabat models, including this commercially permissive release, have not been aligned for safety. Developers and users should perform their own safety fine-tuning and related security measures. In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes.
83
 
84
  ## Technical Specifications
85
  ### Fine-Tuning Details
86
+ Llama3 8B CPT Sahabat AI v1 Instruct was built using a combination of a full parameter fine-tune, on-policy alignment, and model merges of the best performing checkpoints. The training process for fine-tuning was approximately 4 hours, with alignment taking 2 hours, both on 8x H100-80GB GPUs.
87
 
88
  ## Data
89
+ Llama3 8B CPT Sahabat AI v1 Instruct was trained on a wide range of synthetic instructions, alongside publicly available instructions hand-curated by the team with the assistance of native speakers. In addition, special care was taken to ensure that the datasets used had commercially permissive licenses through verification with the original data source.
 
 
 
 
 
 
90
 
91
+ ## Call for Contributions
92
+ We encourage researchers, developers, and language enthusiasts to actively contribute to the enhancement and expansion of Sahabat. Contributions can involve identifying and reporting bugs, sharing pre-training, instruction, and preference data, improving documentation usability, proposing and implementing new model evaluation tasks and metrics, or training versions of the model in additional Indonesian languages. Join us in shaping the future of Sahabat by sharing your expertise and insights to make these models more accessible, accurate, and versatile.
93
 
94
+ ## The Team (by ascending alphabetical order)
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  ### AI Singapore
97
  Chan Adwin<br>
98
+ Chau Shiau Ching<br>
99
  Cheng Nicholas<br>
100
  Choa Esther<br>
101
  Huang Yuli<br>
 
126
 
127
  ### PT GoTo Gojek Tokopedia Tbk
128
  Anissa Dininta<br>
 
129
  Choiri Hendra Hadhil<br>
130
  Goel Priyank<br>
131
  Saini Ajay Kumar<br>
 
135
  Tiwari Anupam<br>
136
  Widjojo Daniel<br>
137
 
138
+ <!--## Acknowledgements
139
 
140
  [AI Singapore](​​https://aisingapore.org/) is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
141
 
142
+ Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of the National Research Foundation or the National University of Singapore. -->
143
 
144
 
145
  ## Contact
146
 
147
+ For more info, please contact us using this [Sahabat Inquiry Form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
148
 
149
  ## Disclaimer
150