File size: 19,936 Bytes
ef28d88
 
 
 
 
e329b2c
 
 
 
 
 
 
 
 
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
ef28d88
e329b2c
 
ef28d88
 
e329b2c
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
 
ef28d88
e329b2c
 
 
ef28d88
e329b2c
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
ef28d88
e329b2c
ef28d88
 
e329b2c
 
 
 
 
 
 
 
 
 
 
 
ef28d88
 
e329b2c
 
 
ef28d88
 
 
 
e329b2c
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
ef28d88
 
e329b2c
ef28d88
e329b2c
ef28d88
 
e329b2c
 
 
 
ef28d88
 
 
 
 
e329b2c
 
 
 
 
 
 
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
ef28d88
e329b2c
 
 
 
ef28d88
e329b2c
ef28d88
e329b2c
ef28d88
e329b2c
 
 
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef28d88
 
e329b2c
 
 
 
ef28d88
 
 
 
 
 
 
e329b2c
 
ef28d88
 
e329b2c
 
 
 
ef28d88
 
e329b2c
 
ef28d88
e329b2c
 
 
 
 
 
 
 
 
ef28d88
e329b2c
ef28d88
 
e329b2c
ef28d88
e329b2c
 
 
 
ef28d88
e329b2c
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef28d88
 
 
e329b2c
 
ef28d88
e329b2c
 
ef28d88
e329b2c
 
ef28d88
 
e329b2c
 
 
 
ef28d88
e329b2c
 
ef28d88
e329b2c
 
 
 
 
 
 
 
 
ef28d88
e329b2c
ef28d88
e329b2c
 
ef28d88
e329b2c
ef28d88
 
e329b2c
ef28d88
e329b2c
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
ef28d88
e329b2c
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
 
ef28d88
 
e329b2c
ef28d88
e329b2c
 
 
 
ef28d88
e329b2c
 
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef28d88
 
 
e329b2c
 
 
 
ef28d88
e329b2c
 
ef28d88
e329b2c
 
 
ef28d88
e329b2c
 
 
 
 
 
 
 
 
 
ef28d88
e329b2c
 
ef28d88
 
 
e329b2c
 
 
 
 
 
 
 
 
ef28d88
 
 
 
 
e329b2c
 
ef28d88
 
 
 
 
e329b2c
ef28d88
e329b2c
 
 
 
ef28d88
 
 
 
e329b2c
 
 
ef28d88
 
 
e329b2c
 
 
ef28d88
 
 
 
 
 
e329b2c
 
ef28d88
e329b2c
ef28d88
 
e329b2c
 
ef28d88
 
 
 
e329b2c
 
 
 
 
 
 
 
ef28d88
e329b2c
 
 
 
ef28d88
 
 
 
e329b2c
 
 
 
 
ef28d88
 
 
 
 
e329b2c
 
ef28d88
e329b2c
ef28d88
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Optional, Tuple, List

# Constants for default configuration
DEFAULT_MAX_SEQ_LEN = 512
DEFAULT_DROPOUT = 0.1
DEFAULT_BASE = 10000.0
DEFAULT_CUTOFFS = [2000, 10000]
DEFAULT_DIV_VAL = 4.0
DEFAULT_PADDING_IDX = 0

class PositionalEncoding(nn.Module):
    """Sinusoidal positional encoding for transformer models."""
    
    def __init__(self, d_model: int, max_seq_len: int = DEFAULT_MAX_SEQ_LEN, dropout: float = DEFAULT_DROPOUT):
        """
        Initialize sinusoidal positional encoding.

        Args:
            d_model (int): Dimension of the model embeddings.
            max_seq_len (int): Maximum sequence length for positional encodings.
            dropout (float): Dropout rate for regularization.
        """
        super().__init__()
        self.d_model = d_model
        self.dropout = nn.Dropout(dropout)

        pe = torch.zeros(max_seq_len, d_model)
        position = torch.arange(0, max_seq_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(DEFAULT_BASE) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term[:, :-1] if d_model % 2 == 1 else div_term)
        self.register_buffer('pe', pe.unsqueeze(0))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Apply positional encoding to input embeddings.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_model).

        Returns:
            torch.Tensor: Tensor with positional encodings applied.
        """
        batch_size, seq_len, d_model = x.size()
        if d_model != self.d_model:
            raise ValueError(f"Input dimension {d_model} does not match d_model {self.d_model}")
        x = x + self.pe[:, :seq_len]
        return self.dropout(x)

class LearnedPositionalEmbedding(nn.Module):
    """Learned positional embeddings for transformer models."""
    
    def __init__(self, max_seq_len: int, d_model: int, dropout: float = DEFAULT_DROPOUT):
        """
        Initialize learned positional embeddings.

        Args:
            max_seq_len (int): Maximum sequence length.
            d_model (int): Dimension of the model embeddings.
            dropout (float): Dropout rate for regularization.
        """
        super().__init__()
        self.max_seq_len = max_seq_len
        self.d_model = d_model
        self.pos_embedding = nn.Embedding(max_seq_len, d_model)
        self.dropout = nn.Dropout(dropout)
        nn.init.normal_(self.pos_embedding.weight, std=0.02)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Apply learned positional embeddings to input.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, seq_len, d_model).

        Returns:
            torch.Tensor: Tensor with positional embeddings applied.
        """
        batch_size, seq_len, d_model = x.size()
        if seq_len > self.max_seq_len:
            raise ValueError(f"Sequence length {seq_len} exceeds maximum {self.max_seq_len}")
        if d_model != self.d_model:
            raise ValueError(f"Input dimension {d_model} does not match d_model {self.d_model}")
        positions = torch.arange(seq_len, device=x.device).unsqueeze(0).expand(batch_size, -1)
        pos_emb = self.pos_embedding(positions)
        x = x + pos_emb
        return self.dropout(x)

class RotaryPositionalEmbedding(nn.Module):
    """Rotary Positional Embedding (RoPE) for transformer models."""
    
    def __init__(self, d_model: int, max_seq_len: int = 2048, base: float = DEFAULT_BASE):
        """
        Initialize rotary positional embeddings.

        Args:
            d_model (int): Dimension of the model embeddings.
            max_seq_len (int): Maximum sequence length.
            base (float): Base for frequency calculation.
        """
        super().__init__()
        self.d_model = d_model
        self.max_seq_len = max_seq_len
        self.base = base
        inv_freq = 1.0 / (base ** (torch.arange(0, d_model, 2).float() / d_model))
        self.register_buffer('inv_freq', inv_freq)
        self._seq_len_cached = 0
        self._cos_cached = None
        self._sin_cached = None

    def _update_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> None:
        """Update cached cosine and sine values for RoPE."""
        if seq_len > self._seq_len_cached:
            self._seq_len_cached = seq_len
            t = torch.arange(seq_len, device=device, dtype=torch.float32)
            freqs = torch.outer(t, self.inv_freq)
            self._cos_cached = freqs.cos().to(dtype)
            self._sin_cached = freqs.sin().to(dtype)

    def _rotate_half(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
        """Apply rotary transformation to half of the tensor."""
        x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
        return torch.cat([x1 * cos - x2 * sin, x1 * sin + x2 * cos], dim=-1)

    def forward(self, q: torch.Tensor, k: torch.Tensor, start_pos: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Apply rotary positional embeddings to query and key tensors.

        Args:
            q (torch.Tensor): Query tensor of shape (batch_size, seq_len, num_heads, head_dim).
            k (torch.Tensor): Key tensor of shape (batch_size, seq_len, num_heads, head_dim).
            start_pos (int): Starting position for positional encoding.

        Returns:
            Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors.
        """
        batch_size, seq_len, num_heads, head_dim = q.shape
        self._update_cos_sin_cache(start_pos + seq_len, q.device, q.dtype)
        cos = self._cos_cached[start_pos:start_pos + seq_len, :head_dim // 2].view(1, seq_len, 1, -1)
        sin = self._sin_cached[start_pos:start_pos + seq_len, :head_dim // 2].view(1, seq_len, 1, -1)

        q = q.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
        k = k.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
        q_rot = self._rotate_half(q, cos, sin)
        k_rot = self._rotate_half(k, cos, sin)
        q_rot = q_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
        k_rot = k_rot.reshape(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
        return q_rot, k_rot

class TechEmbeddingLayer(nn.Module):
    """Comprehensive embedding layer with token and positional embeddings."""
    
    def __init__(
        self,
        vocab_size: int,
        d_model: int,
        max_seq_len: int = DEFAULT_MAX_SEQ_LEN,
        dropout: float = DEFAULT_DROPOUT,
        padding_idx: int = DEFAULT_PADDING_IDX,
        pos_encoding: str = "learned",
        layer_norm: bool = True,
    ):
        """
        Initialize the embedding layer.

        Args:
            vocab_size (int): Size of the vocabulary.
            d_model (int): Dimension of the model embeddings.
            max_seq_len (int): Maximum sequence length.
            dropout (float): Dropout rate.
            padding_idx (int): Index for padding token.
            pos_encoding (str): Type of positional encoding ('sinusoidal', 'learned', 'rope').
            layer_norm (bool): Whether to apply layer normalization.
        """
        super().__init__()
        self.d_model = d_model
        self.vocab_size = vocab_size
        self.padding_idx = padding_idx
        self.pos_encoding_type = pos_encoding.lower()

        self.token_embedding = nn.Embedding(vocab_size, d_model, padding_idx=padding_idx)
        if pos_encoding == "sinusoidal":
            self.pos_encoding = PositionalEncoding(d_model, max_seq_len, dropout)
        elif pos_encoding == "learned":
            self.pos_encoding = LearnedPositionalEmbedding(max_seq_len, d_model, dropout)
        elif pos_encoding == "rope":
            self.pos_encoding = RotaryPositionalEmbedding(d_model, max_seq_len)
        else:
            raise ValueError(f"Unknown positional encoding type: {pos_encoding}")

        self.layer_norm = nn.LayerNorm(d_model) if layer_norm else nn.Identity()
        self.dropout = nn.Dropout(dropout)
        self._init_weights()

    def _init_weights(self) -> None:
        """Initialize weights for token embeddings."""
        nn.init.normal_(self.token_embedding.weight, mean=0.0, std=0.02)
        if self.padding_idx is not None:
            nn.init.constant_(self.token_embedding.weight[self.padding_idx], 0.0)

    def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
        """
        Forward pass for embedding layer.

        Args:
            input_ids (torch.Tensor): Input tensor of shape (batch_size, seq_len).

        Returns:
            torch.Tensor: Embedded tensor of shape (batch_size, seq_len, d_model).
        """
        if (input_ids >= self.vocab_size).any():
            raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})")
        embeddings = self.token_embedding(input_ids)
        if self.pos_encoding_type != "rope":
            embeddings = self.pos_encoding(embeddings)
        embeddings = self.layer_norm(embeddings)
        return self.dropout(embeddings)

    def get_positional_encoding(self) -> Optional[nn.Module]:
        """Return the positional encoding module if RoPE, else None."""
        return self.pos_encoding if self.pos_encoding_type == "rope" else None

class AdaptiveEmbedding(nn.Module):
    """Adaptive embedding layer with variable embedding dimensions."""
    
    def __init__(
        self,
        vocab_size: int,
        d_model: int,
        cutoffs: List[int] = DEFAULT_CUTOFFS,
        div_val: float = DEFAULT_DIV_VAL,
    ):
        """
        Initialize adaptive embedding layer.

        Args:
            vocab_size (int): Size of the vocabulary.
            d_model (int): Dimension of the model embeddings.
            cutoffs (List[int]): Cutoff points for vocabulary splits.
            div_val (float): Division factor for embedding dimensions.
        """
        super().__init__()
        self.vocab_size = vocab_size
        self.d_model = d_model
        self.cutoffs = [0] + cutoffs + [vocab_size]
        self.div_val = div_val

        self.embeddings = nn.ModuleList()
        self.projections = nn.ModuleList()

        for i in range(len(self.cutoffs) - 1):
            l_idx, r_idx = self.cutoffs[i], self.cutoffs[i + 1]
            d_emb = int(d_model / (div_val ** i))
            emb = nn.Embedding(r_idx - l_idx, d_emb)
            nn.init.normal_(emb.weight, mean=0.0, std=0.02)
            self.embeddings.append(emb)
            self.projections.append(
                nn.Linear(d_emb, d_model, bias=False) if d_emb != d_model else nn.Identity()
            )
            if d_emb != d_model:
                nn.init.normal_(self.projections[-1].weight, mean=0.0, std=0.02)

    def forward(self, input_ids: torch.Tensor) -> torch.Tensor:
        """
        Forward pass for adaptive embedding.

        Args:
            input_ids (torch.Tensor): Input tensor of shape (batch_size, seq_len).

        Returns:
            torch.Tensor: Embedded tensor of shape (batch_size, seq_len, d_model).
        """
        if (input_ids >= self.vocab_size).any():
            raise ValueError(f"Input IDs contain values >= vocab_size ({self.vocab_size})")
        batch_size, seq_len = input_ids.shape
        embeddings = torch.zeros(batch_size, seq_len, self.d_model, device=input_ids.device, dtype=torch.float32)

        for i in range(len(self.cutoffs) - 1):
            l_idx, r_idx = self.cutoffs[i], self.cutoffs[i + 1]
            mask = (input_ids >= l_idx) & (input_ids < r_idx)
            if mask.any():
                indices = (input_ids[mask] - l_idx).clamp(max=r_idx - l_idx - 1)
                emb = self.embeddings[i](indices)
                embeddings[mask] = self.projections[i](emb)
        return embeddings

def create_padding_mask(input_ids: torch.Tensor, padding_idx: int = DEFAULT_PADDING_IDX) -> torch.Tensor:
    """
    Create a padding mask for input IDs.

    Args:
        input_ids (torch.Tensor): Input tensor of shape (batch_size, seq_len).
        padding_idx (int): Index for padding token.

    Returns:
        torch.Tensor: Padding mask of shape (batch_size, seq_len).
    """
    return input_ids == padding_idx

def create_causal_mask(seq_len: int, device: torch.device) -> torch.Tensor:
    """
    Create a causal mask for attention.

    Args:
        seq_len (int): Sequence length.
        device (torch.device): Device for tensor allocation.

    Returns:
        torch.Tensor: Causal mask of shape (seq_len, seq_len).
    """
    return torch.triu(torch.ones(seq_len, seq_len, device=device), diagonal=1).bool()

def create_attention_mask(input_ids: torch.Tensor, padding_idx: int = DEFAULT_PADDING_IDX, causal: bool = True) -> torch.Tensor:
    """
    Create an attention mask combining padding and causal masks.

    Args:
        input_ids (torch.Tensor): Input tensor of shape (batch_size, seq_len).
        padding_idx (int): Index for padding token.
        causal (bool): Whether to include causal masking.

    Returns:
        torch.Tensor: Attention mask of shape (batch_size, seq_len, seq_len).
    """
    batch_size, seq_len = input_ids.shape
    device = input_ids.device
    padding_mask = create_padding_mask(input_ids, padding_idx).unsqueeze(1).expand(batch_size, seq_len, seq_len)
    if causal:
        causal_mask = create_causal_mask(seq_len, device).unsqueeze(0).expand(batch_size, seq_len, seq_len)
        return padding_mask | causal_mask
    return padding_mask

class EmbeddingAnalyzer:
    """Analyzer for inspecting embedding layer properties."""
    
    def __init__(self, embedding_layer: nn.Module):
        """
        Initialize the embedding analyzer.

        Args:
            embedding_layer (nn.Module): The embedding layer to analyze.
        """
        self.embedding_layer = embedding_layer

    def get_similarity_matrix(self, tokens: Optional[List[int]] = None) -> torch.Tensor:
        """
        Compute the cosine similarity matrix for embeddings.

        Args:
            tokens (Optional[List[int]]): List of token IDs to compute similarities for.

        Returns:
            torch.Tensor: Cosine similarity matrix.
        """
        if hasattr(self.embedding_layer, 'token_embedding'):
            embeddings = self.embedding_layer.token_embedding.weight
        elif hasattr(self.embedding_layer, 'embeddings'):
            embeddings = torch.cat(
                [self.embedding_layer.projections[i](emb.weight) for i, emb in enumerate(self.embedding_layer.embeddings)],
                dim=0
            )
        else:
            embeddings = self.embedding_layer.weight

        if tokens is not None and len(tokens) > 0:
            embeddings = embeddings[tokens]
        return torch.mm(F.normalize(embeddings, p=2, dim=1), F.normalize(embeddings, p=2, dim=1).t())

    def find_similar_tokens(self, token_id: int, top_k: int = 10) -> List[Tuple[int, float]]:
        """
        Find the top-k most similar tokens to a given token ID.

        Args:
            token_id (int): Token ID to find similar tokens for.
            top_k (int): Number of similar tokens to return.

        Returns:
            List[Tuple[int, float]]: List of (token_id, similarity_score) pairs.
        """
        similarity_matrix = self.get_similarity_matrix()
        if token_id >= similarity_matrix.shape[0]:
            raise ValueError(f"Token ID {token_id} is out of range")
        similarities = similarity_matrix[token_id]
        top_similarities, top_indices = torch.topk(similarities, top_k + 1)
        mask = top_indices != token_id
        return list(zip(top_indices[mask][:top_k].tolist(), top_similarities[mask][:top_k].tolist()))

    def analyze_embedding_distribution(self) -> dict:
        """
        Analyze the statistical properties of the embedding weights.

        Returns:
            dict: Dictionary containing mean, std, min, max, norm_mean, and norm_std of embeddings.
        """
        if hasattr(self.embedding_layer, 'token_embedding'):
            weights = self.embedding_layer.token_embedding.weight
        elif hasattr(self.embedding_layer, 'embeddings'):
            weights = torch.cat([emb.weight for emb in self.embedding_layer.embeddings], dim=0)
        else:
            weights = self.embedding_layer.weight
        return {
            'mean': weights.mean().item(),
            'std': weights.std().item(),
            'min': weights.min().item(),
            'max': weights.max().item(),
            'norm_mean': weights.norm(dim=1).mean().item(),
            'norm_std': weights.norm(dim=1).std().item(),
        }

def test_embeddings() -> None:
    """Test the embedding layers and related utilities."""
    print("Starting embedding layer tests...")
    vocab_size = 1000
    d_model = 512
    max_seq_len = 128
    batch_size = 4
    seq_len = 64

    input_ids = torch.randint(1, vocab_size, (batch_size, seq_len))
    embedding_types = [
        ("Learned Position", "learned"),
        ("Sinusoidal Position", "sinusoidal"),
        ("RoPE", "rope"),
    ]

    for name, pos_type in embedding_types:
        print(f"\nTesting {name} Embedding:")
        embedding_layer = TechEmbeddingLayer(
            vocab_size=vocab_size,
            d_model=d_model,
            max_seq_len=max_seq_len,
            pos_encoding=pos_type,
        )
        embeddings = embedding_layer(input_ids)
        assert embeddings.shape == (batch_size, seq_len, d_model), f"Unexpected shape for {name}: {embeddings.shape}"
        print(f"Input shape: {input_ids.shape}")
        print(f"Output shape: {embeddings.shape}")
        print(f"Expected shape: ({batch_size}, {seq_len}, {d_model})")

        analyzer = EmbeddingAnalyzer(embedding_layer)
        stats = analyzer.analyze_embedding_distribution()
        print(f"Embedding statistics:")
        for key, value in stats.items():
            print(f"  {key}: {value:.4f}")

        # Test similarity for a sample token
        similar_tokens = analyzer.find_similar_tokens(token_id=0, top_k=5)
        print(f"Top 5 similar tokens to token 0: {similar_tokens}")

    print("\nTesting Adaptive Embeddings:")
    adaptive_emb = AdaptiveEmbedding(vocab_size=vocab_size, d_model=d_model, cutoffs=[200, 500], div_val=2.0)
    embeddings = adaptive_emb(input_ids)
    assert embeddings.shape == (batch_size, seq_len, d_model), f"Unexpected adaptive embedding shape: {embeddings.shape}"
    print(f"Adaptive embedding output shape: {embeddings.shape}")

    print("\nTesting masking functions:")
    input_ids_padded = input_ids.clone()
    input_ids_padded[:, -10:] = 0
    padding_mask = create_padding_mask(input_ids_padded, padding_idx=0)
    causal_mask = create_causal_mask(seq_len, input_ids.device)
    attention_mask = create_attention_mask(input_ids_padded, padding_idx=0, causal=True)

    assert padding_mask.shape == (batch_size, seq_len), f"Unexpected padding mask shape: {padding_mask.shape}"
    assert causal_mask.shape == (seq_len, seq_len), f"Unexpected causal mask shape: {causal_mask.shape}"
    assert attention_mask.shape == (batch_size, seq_len, seq_len), f"Unexpected attention mask shape: {attention_mask.shape}"
    print(f"Padding mask shape: {padding_mask.shape}")
    print(f"Causal mask shape: {causal_mask.shape}")
    print(f"Attention mask shape: {attention_mask.shape}")
    print(f"Padding positions: {padding_mask.sum().item()}")
    print(f"Causal mask positions: {causal_mask.sum().item()}")
    print(f"Combined mask positions: {attention_mask.sum().item()}")

    print("\nAll embedding tests completed successfully!")

if __name__ == "__main__":
    test_embeddings()