File size: 38,619 Bytes
613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b 613f2bb 02aea9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 |
import os
import json
import pickle
import argparse
import logging
import threading
from collections import Counter, defaultdict, OrderedDict
from typing import List, Dict, Set, Optional, Tuple, Union, Iterator, Any
from dataclasses import dataclass, asdict
from pathlib import Path
import re
import unicodedata
import heapq
from functools import lru_cache
import time
from contextlib import contextmanager
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class TokenizerConfig:
"""Configuration class with validation and serialization support"""
vocab_size: int = 32000
min_freq: int = 2
max_token_length: int = 256
cache_size: int = 10000
chunk_size: int = 10000
# Special tokens
pad_token: str = '<pad>'
unk_token: str = '<unk>'
bos_token: str = '<bos>'
eos_token: str = '<eos>'
# Technical domain specific
enable_code_detection: bool = True
enable_math_detection: bool = True
enable_url_detection: bool = True
def __post_init__(self):
"""Validate configuration parameters"""
if self.vocab_size <= 0:
raise ValueError(f"vocab_size must be positive, got {self.vocab_size}")
if self.min_freq <= 0:
raise ValueError(f"min_freq must be positive, got {self.min_freq}")
if self.max_token_length <= 0:
raise ValueError(f"max_token_length must be positive, got {self.max_token_length}")
if self.cache_size <= 0:
raise ValueError(f"cache_size must be positive, got {self.cache_size}")
logger.info(f"TokenizerConfig validated: vocab_size={self.vocab_size}")
def save(self, path: Union[str, Path]) -> None:
"""Save configuration to JSON file"""
path = Path(path)
with open(path, 'w', encoding='utf-8') as f:
json.dump(asdict(self), f, indent=2, ensure_ascii=False)
logger.info(f"Config saved to {path}")
@classmethod
def load(cls, path: Union[str, Path]) -> 'TokenizerConfig':
"""Load configuration from JSON file"""
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"Config file not found: {path}")
with open(path, 'r', encoding='utf-8') as f:
config_dict = json.load(f)
logger.info(f"Config loaded from {path}")
return cls(**config_dict)
class ThreadSafeLRUCache:
"""Thread-safe LRU cache with size limits"""
def __init__(self, max_size: int = 10000):
self.max_size = max_size
self.cache = OrderedDict()
self.lock = threading.RLock()
def get(self, key: str) -> Optional[List[str]]:
"""Get value from cache"""
with self.lock:
if key in self.cache:
# Move to end (most recently used)
value = self.cache.pop(key)
self.cache[key] = value
return value
return None
def put(self, key: str, value: List[str]) -> None:
"""Add value to cache"""
with self.lock:
if key in self.cache:
self.cache.pop(key)
elif len(self.cache) >= self.max_size:
# Remove least recently used item
self.cache.popitem(last=False)
self.cache[key] = value
def clear(self) -> None:
"""Clear all cache entries"""
with self.lock:
self.cache.clear()
def size(self) -> int:
"""Get current cache size"""
with self.lock:
return len(self.cache)
class EfficientBPE:
"""Efficient BPE implementation using priority queues"""
def __init__(self):
self.merges: List[Tuple[str, str]] = []
self.merge_ranks: Dict[Tuple[str, str], int] = {}
def train(self, word_counts: Dict[str, int], num_merges: int) -> None:
"""Train BPE using efficient algorithm with priority queue"""
logger.info(f"Training BPE with {num_merges} merges")
# Convert words to character sequences
vocab = defaultdict(int)
for word, count in word_counts.items():
vocab[tuple(word)] += count
# Get all possible pairs and their frequencies
def get_pairs(vocab_dict):
pairs = defaultdict(int)
for word, freq in vocab_dict.items():
if len(word) < 2:
continue
for i in range(len(word) - 1):
pair = (word[i], word[i + 1])
pairs[pair] += freq
return pairs
for i in range(num_merges):
if i % 1000 == 0:
logger.info(f"BPE merge progress: {i}/{num_merges}")
pairs = get_pairs(vocab)
if not pairs:
logger.warning(f"No more pairs available at merge {i}")
break
# Get most frequent pair
best_pair = max(pairs.items(), key=lambda x: x[1])[0]
# Merge the best pair
new_vocab = {}
bigram = best_pair
for word, freq in vocab.items():
new_word = []
i = 0
while i < len(word):
if i < len(word) - 1 and (word[i], word[i + 1]) == bigram:
new_word.append(word[i] + word[i + 1])
i += 2
else:
new_word.append(word[i])
i += 1
new_vocab[tuple(new_word)] = freq
vocab = new_vocab
self.merges.append(best_pair)
self.merge_ranks[best_pair] = len(self.merges) - 1
logger.info(f"BPE training completed with {len(self.merges)} merges")
def apply(self, word: str) -> List[str]:
"""Apply BPE merges to a word efficiently"""
if len(word) <= 1:
return list(word)
# Start with character-level tokens
word_tokens = list(word)
# Apply merges in order
for merge_pair in self.merges:
if len(word_tokens) == 1:
break
new_tokens = []
i = 0
while i < len(word_tokens):
if (i < len(word_tokens) - 1 and
word_tokens[i] == merge_pair[0] and
word_tokens[i + 1] == merge_pair[1]):
new_tokens.append(merge_pair[0] + merge_pair[1])
i += 2
else:
new_tokens.append(word_tokens[i])
i += 1
word_tokens = new_tokens
return word_tokens
class TechnicalTokenizer:
"""
Production-quality tokenizer for technical content with:
- Efficient BPE implementation
- Thread-safe caching
- Memory-efficient streaming
- Comprehensive error handling
- Proper logging and monitoring
"""
def __init__(self, config: Optional[TokenizerConfig] = None):
self.config = config or TokenizerConfig()
# Core components
self.vocab: Dict[str, int] = {}
self.id_to_token: Dict[int, str] = {}
self.token_frequencies: Counter = Counter()
self.bpe = EfficientBPE()
# Thread-safe cache
self.cache = ThreadSafeLRUCache(self.config.cache_size)
# Special tokens mapping
self.special_tokens = {
self.config.pad_token: 0,
self.config.unk_token: 1,
self.config.bos_token: 2,
self.config.eos_token: 3,
'<system>': 4,
'<user>': 5,
'<assistant>': 6,
'<|endoftext|>': 7,
'<|newline|>': 8,
'<|tab|>': 9,
'<|code|>': 10,
'<|/code|>': 11,
'<|math|>': 12,
'<|/math|>': 13,
'<URL>': 14,
'<EMAIL>': 15,
'<NUMBER>': 16
}
# Initialize vocabulary with special tokens
self._initialize_vocab()
# Compile regex patterns for efficiency
self._compile_patterns()
# Technical terms for priority processing
self.technical_terms = self._load_technical_terms()
logger.info(f"TechnicalTokenizer initialized with vocab_size={self.config.vocab_size}")
def _initialize_vocab(self) -> None:
"""Initialize vocabulary with special tokens"""
self.vocab = self.special_tokens.copy()
self.id_to_token = {v: k for k, v in self.special_tokens.items()}
def _compile_patterns(self) -> None:
"""Compile regex patterns for efficient text processing"""
patterns = []
if self.config.enable_code_detection:
patterns.extend([
r'```[\s\S]*?```', # Code blocks
r'`[^`\n]+`', # Inline code
])
if self.config.enable_url_detection:
patterns.append(r'https?://[^\s<>"{}|\\^`[\]]+')
patterns.extend([
r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', # Email
r'<[^>]+>', # Special tokens
r'\b\d+\.?\d*\b', # Numbers
r'\b\w+(?:\'\w+)?\b', # Words with contractions
r'[^\w\s]', # Punctuation
])
self.tokenizer_pattern = re.compile('|'.join(f'({pattern})' for pattern in patterns))
# Additional patterns for normalization
self.newline_pattern = re.compile(r'\r\n|\r')
self.tab_pattern = re.compile(r'\t')
self.multiple_space_pattern = re.compile(r'\s+')
def _load_technical_terms(self) -> Set[str]:
"""Load technical terms for priority processing"""
return {
# Programming
'function', 'variable', 'array', 'object', 'class', 'method',
'parameter', 'return', 'import', 'export', 'async', 'await',
'promise', 'callback', 'algorithm', 'datatype', 'boolean',
# Languages
'python', 'javascript', 'java', 'cpp', 'rust', 'go',
'html', 'css', 'sql', 'typescript', 'kotlin', 'swift',
# Web/API
'api', 'rest', 'graphql', 'json', 'xml', 'http', 'https',
'endpoint', 'request', 'response', 'authentication',
# Math/ML
'neural', 'network', 'model', 'training', 'validation',
'accuracy', 'precision', 'recall', 'loss', 'gradient',
'derivative', 'integral', 'matrix', 'vector', 'tensor',
'transformer', 'attention', 'embedding', 'tokenization',
# Infrastructure
'docker', 'kubernetes', 'microservice', 'database',
'server', 'client', 'deployment', 'scalability'
}
@contextmanager
def _error_context(self, operation: str):
"""Context manager for consistent error handling"""
try:
yield
except Exception as e:
logger.error(f"Error in {operation}: {str(e)}")
raise
def normalize_text(self, text: str) -> str:
"""Normalize text with proper error handling"""
if not isinstance(text, str):
raise TypeError(f"Expected str, got {type(text)}")
with self._error_context("text normalization"):
# Basic normalization
text = self.newline_pattern.sub('\n', text)
text = self.tab_pattern.sub('<|tab|>', text)
text = unicodedata.normalize('NFKC', text)
# Handle special token markers
text = re.sub(r'<\|system\|>', ' <system> ', text)
text = re.sub(r'<\|user\|>', ' <user> ', text)
text = re.sub(r'<\|assistant\|>', ' <assistant> ', text)
text = re.sub(r'<\|endoftext\|>', ' <|endoftext|> ', text)
return text.strip()
def pre_tokenize(self, text: str) -> List[str]:
"""Pre-tokenize text into words and special tokens"""
if not text:
return []
with self._error_context("pre-tokenization"):
normalized_text = self.normalize_text(text)
# Find all tokens using compiled pattern
matches = self.tokenizer_pattern.findall(normalized_text)
# Flatten the match groups and filter empty strings
tokens = []
for match_groups in matches:
for group in match_groups:
if group:
tokens.append(group)
break
return [token.strip() for token in tokens if token.strip()]
def train_from_iterator(self, text_iterator: Iterator[str],
total_texts: Optional[int] = None) -> None:
"""
Train tokenizer from text iterator for memory efficiency
Args:
text_iterator: Iterator yielding text strings
total_texts: Optional total count for progress tracking
"""
logger.info("Starting BPE training from iterator")
start_time = time.time()
word_counts = Counter()
processed_texts = 0
# Process texts in chunks to manage memory
current_chunk = []
for text in text_iterator:
current_chunk.append(text)
processed_texts += 1
if len(current_chunk) >= self.config.chunk_size:
self._process_text_chunk(current_chunk, word_counts)
current_chunk.clear()
if processed_texts % 10000 == 0:
elapsed = time.time() - start_time
logger.info(f"Processed {processed_texts} texts in {elapsed:.1f}s")
# Process remaining texts
if current_chunk:
self._process_text_chunk(current_chunk, word_counts)
logger.info(f"Pre-processing completed: {len(word_counts)} unique words")
# Filter by frequency and boost technical terms
filtered_words = {}
for word, count in word_counts.items():
if count >= self.config.min_freq:
# Boost technical terms
if word.lower() in self.technical_terms:
count *= 5
filtered_words[word] = count
logger.info(f"After filtering: {len(filtered_words)} words")
# Build character vocabulary
all_chars = set()
for word in filtered_words:
all_chars.update(word)
# Add characters to vocabulary
for char in sorted(all_chars):
if char not in self.vocab:
token_id = len(self.vocab)
self.vocab[char] = token_id
self.id_to_token[token_id] = char
# Calculate number of merges needed
current_vocab_size = len(self.vocab)
target_vocab_size = self.config.vocab_size
num_merges = target_vocab_size - current_vocab_size
if num_merges > 0:
# Train BPE
self.bpe.train(filtered_words, num_merges)
# Add merged tokens to vocabulary
for merge_pair in self.bpe.merges:
merged_token = merge_pair[0] + merge_pair[1]
if merged_token not in self.vocab:
token_id = len(self.vocab)
self.vocab[merged_token] = token_id
self.id_to_token[token_id] = merged_token
# Update token frequencies
for word, count in filtered_words.items():
tokens = self.apply_bpe(word)
for token in tokens:
self.token_frequencies[token] += count
training_time = time.time() - start_time
logger.info(f"Training completed in {training_time:.1f}s")
logger.info(f"Final vocabulary size: {len(self.vocab)}")
def _process_text_chunk(self, texts: List[str], word_counts: Counter) -> None:
"""Process a chunk of texts and update word counts"""
for text in texts:
try:
tokens = self.pre_tokenize(text)
for token in tokens:
if len(token) <= self.config.max_token_length:
word_counts[token] += 1
except Exception as e:
logger.warning(f"Error processing text chunk: {e}")
continue
def apply_bpe(self, word: str) -> List[str]:
"""Apply BPE to a word with caching"""
if not word:
return []
# Check cache first
cached_result = self.cache.get(word)
if cached_result is not None:
return cached_result
# Apply BPE
tokens = self.bpe.apply(word)
# Cache the result
self.cache.put(word, tokens)
return tokens
def tokenize(self, text: str) -> List[str]:
"""Tokenize text into subword tokens"""
if not text:
return []
with self._error_context("tokenization"):
pre_tokens = self.pre_tokenize(text)
final_tokens = []
for token in pre_tokens:
if token in self.special_tokens or token in self.vocab:
final_tokens.append(token)
else:
bpe_tokens = self.apply_bpe(token)
final_tokens.extend(bpe_tokens)
return final_tokens
def encode(self, text: str, add_special_tokens: bool = False) -> List[int]:
"""Encode text to token IDs"""
if not isinstance(text, str):
raise TypeError(f"Expected str, got {type(text)}")
tokens = self.tokenize(text)
if add_special_tokens:
tokens = [self.config.bos_token] + tokens + [self.config.eos_token]
ids = []
unk_id = self.vocab[self.config.unk_token]
for token in tokens:
token_id = self.vocab.get(token, unk_id)
ids.append(token_id)
return ids
def decode(self, ids: List[int], skip_special_tokens: bool = False) -> str:
"""Decode token IDs to text"""
if not isinstance(ids, (list, tuple)):
raise TypeError(f"Expected list or tuple, got {type(ids)}")
tokens = []
for token_id in ids:
if not isinstance(token_id, int):
raise TypeError(f"Expected int token ID, got {type(token_id)}")
if token_id not in self.id_to_token:
logger.warning(f"Unknown token ID: {token_id}")
continue
token = self.id_to_token[token_id]
if skip_special_tokens and token in self.special_tokens:
continue
tokens.append(token)
# Join tokens and clean up
text = ''.join(tokens)
text = text.replace('<|tab|>', '\t')
text = text.replace('<|newline|>', '\n')
return text
def get_vocab_size(self) -> int:
"""Get vocabulary size"""
return len(self.vocab)
def get_vocab(self) -> Dict[str, int]:
"""Get vocabulary dictionary (copy for safety)"""
return self.vocab.copy()
def get_cache_info(self) -> Dict[str, int]:
"""Get cache statistics"""
return {
'size': self.cache.size(),
'max_size': self.config.cache_size,
'hit_rate': getattr(self.cache, 'hit_rate', 0)
}
def save(self, save_dir: Union[str, Path]) -> None:
"""Save tokenizer with validation"""
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
logger.info(f"Saving tokenizer to {save_dir}")
try:
# Save configuration
self.config.save(save_dir / 'config.json')
# Save vocabulary
with open(save_dir / 'vocab.json', 'w', encoding='utf-8') as f:
json.dump(self.vocab, f, indent=2, ensure_ascii=False)
# Save BPE merges
with open(save_dir / 'merges.txt', 'w', encoding='utf-8') as f:
for merge in self.bpe.merges:
f.write(f"{merge[0]} {merge[1]}\n")
# Save token frequencies
with open(save_dir / 'frequencies.pkl', 'wb') as f:
pickle.dump(dict(self.token_frequencies), f)
# Save metadata
metadata = {
'version': '2.0',
'vocab_size': len(self.vocab),
'num_merges': len(self.bpe.merges),
'special_tokens': self.special_tokens
}
with open(save_dir / 'metadata.json', 'w', encoding='utf-8') as f:
json.dump(metadata, f, indent=2)
logger.info("Tokenizer saved successfully")
except Exception as e:
logger.error(f"Error saving tokenizer: {e}")
raise
@classmethod
def load(cls, save_dir: Union[str, Path]) -> 'TechnicalTokenizer':
"""Load tokenizer from directory"""
save_dir = Path(save_dir)
if not save_dir.exists():
raise FileNotFoundError(f"Tokenizer directory not found: {save_dir}")
logger.info(f"Loading tokenizer from {save_dir}")
try:
# Load configuration
config = TokenizerConfig.load(save_dir / 'config.json')
# Create tokenizer instance
tokenizer = cls(config)
# Load vocabulary
with open(save_dir / 'vocab.json', 'r', encoding='utf-8') as f:
tokenizer.vocab = json.load(f)
tokenizer.id_to_token = {v: k for k, v in tokenizer.vocab.items()}
# Load BPE merges
merges_file = save_dir / 'merges.txt'
if merges_file.exists():
with open(merges_file, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if line:
parts = line.split()
if len(parts) == 2:
tokenizer.bpe.merges.append(tuple(parts))
# Rebuild merge ranks
tokenizer.bpe.merge_ranks = {
merge: i for i, merge in enumerate(tokenizer.bpe.merges)
}
# Load token frequencies
freq_file = save_dir / 'frequencies.pkl'
if freq_file.exists():
with open(freq_file, 'rb') as f:
freq_dict = pickle.load(f)
tokenizer.token_frequencies = Counter(freq_dict)
logger.info(f"Tokenizer loaded successfully")
logger.info(f"Vocabulary size: {len(tokenizer.vocab)}")
logger.info(f"Number of BPE merges: {len(tokenizer.bpe.merges)}")
return tokenizer
except Exception as e:
logger.error(f"Error loading tokenizer: {e}")
raise
def create_text_iterator(file_paths: List[Union[str, Path]],
max_texts: Optional[int] = None) -> Iterator[str]:
"""Create memory-efficient text iterator from multiple files"""
processed_count = 0
for file_path in file_paths:
file_path = Path(file_path)
if not file_path.exists():
logger.warning(f"File not found: {file_path}")
continue
logger.info(f"Processing file: {file_path}")
try:
if file_path.suffix == '.jsonl':
with open(file_path, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f, 1):
try:
data = json.loads(line.strip())
if 'messages' in data:
# Conversation format
texts = []
for msg in data['messages']:
content = msg.get('content', '').strip()
if content:
texts.append(content)
if texts:
yield ' '.join(texts)
processed_count += 1
elif 'text' in data:
# Simple text format
text = data['text'].strip()
if text:
yield text
processed_count += 1
if max_texts and processed_count >= max_texts:
return
except json.JSONDecodeError as e:
logger.warning(f"JSON decode error at line {line_num} in {file_path}: {e}")
continue
else:
# Plain text file
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Split by double newlines or other separators
chunks = re.split(r'\n\s*\n', content)
for chunk in chunks:
chunk = chunk.strip()
if chunk and len(chunk) > 50: # Skip very short chunks
yield chunk
processed_count += 1
if max_texts and processed_count >= max_texts:
return
except Exception as e:
logger.error(f"Error processing file {file_path}: {e}")
continue
logger.info(f"Total texts processed: {processed_count}")
def train_tokenizer(input_files: List[Union[str, Path]],
output_dir: Union[str, Path],
config: Optional[TokenizerConfig] = None,
max_texts: Optional[int] = None) -> TechnicalTokenizer:
"""Train a new tokenizer from input files"""
config = config or TokenizerConfig()
tokenizer = TechnicalTokenizer(config)
# Create text iterator
text_iter = create_text_iterator(input_files, max_texts)
# Train tokenizer
tokenizer.train_from_iterator(text_iter)
# Save tokenizer
tokenizer.save(output_dir)
return tokenizer
def main():
"""Main CLI interface"""
parser = argparse.ArgumentParser(
description="Production-Quality Technical Tokenizer",
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
# Input/Output
parser.add_argument('--input_files', nargs='+',
help='Input files for training')
parser.add_argument('--output_dir', default='tokenizer_output',
help='Output directory for tokenizer')
parser.add_argument('--load_from',
help='Load existing tokenizer from directory')
# Training parameters
parser.add_argument('--vocab_size', type=int, default=32000,
help='Target vocabulary size')
parser.add_argument('--min_freq', type=int, default=2,
help='Minimum token frequency')
parser.add_argument('--max_texts', type=int,
help='Maximum number of texts to process')
parser.add_argument('--cache_size', type=int, default=10000,
help='BPE cache size')
# Testing
parser.add_argument('--test_text',
help='Test text for tokenization analysis')
parser.add_argument('--benchmark', action='store_true',
help='Run performance benchmarks')
# Logging
parser.add_argument('--verbose', action='store_true',
help='Enable verbose logging')
args = parser.parse_args()
if args.verbose:
logging.getLogger().setLevel(logging.DEBUG)
try:
if args.load_from:
# Load existing tokenizer
tokenizer = TechnicalTokenizer.load(args.load_from)
if args.test_text:
print(f"\nTokenization Analysis:")
print(f"Text: {args.test_text}")
tokens = tokenizer.tokenize(args.test_text)
ids = tokenizer.encode(args.test_text)
decoded = tokenizer.decode(ids)
print(f"Tokens: {tokens}")
print(f"Token IDs: {ids}")
print(f"Decoded: {decoded}")
print(f"Token count: {len(tokens)}")
print(f"Compression ratio: {len(args.test_text.split()) / len(tokens):.2f}")
if args.benchmark:
run_benchmark(tokenizer)
else:
# Train new tokenizer
if not args.input_files:
parser.error("--input_files required when not loading existing tokenizer")
# Create configuration
config = TokenizerConfig(
vocab_size=args.vocab_size,
min_freq=args.min_freq,
cache_size=args.cache_size
)
# Train tokenizer
tokenizer = train_tokenizer(
input_files=args.input_files,
output_dir=args.output_dir,
config=config,
max_texts=args.max_texts
)
# Test on sample texts
test_texts = [
"Hello, how can I help you with your Python programming question?",
"The neural network architecture uses attention mechanisms for better performance.",
"```python\ndef fibonacci(n):\n if n <= 1:\n return n\n return fibonacci(n-1) + fibonacci(n-2)\n```",
"The derivative of x² is 2x, and the integral is (x³)/3 + C."
]
print("\nTokenization Analysis on Sample Texts:")
print("=" * 50)
for i, text in enumerate(test_texts, 1):
print(f"\nTest {i}:")
print(f"Text: {text}")
tokens = tokenizer.tokenize(text)
ids = tokenizer.encode(text)
print(f"Tokens ({len(tokens)}): {tokens}")
print(f"Token IDs: {ids}")
word_count = len(text.split())
compression_ratio = word_count / len(tokens) if tokens else 0
print(f"Compression ratio: {compression_ratio:.2f}")
print(f"\nTokenizer training completed!")
print(f"Vocabulary size: {tokenizer.get_vocab_size()}")
print(f"Cache info: {tokenizer.get_cache_info()}")
except Exception as e:
logger.error(f"Error in main: {e}")
if args.verbose:
import traceback
traceback.print_exc()
return 1
return 0
def run_benchmark(tokenizer: TechnicalTokenizer) -> None:
"""Run performance benchmarks on the tokenizer"""
import time
import random
import string
print("\nRunning Performance Benchmarks...")
print("=" * 50)
# Generate test data
test_texts = []
# Short texts
for _ in range(1000):
length = random.randint(10, 50)
text = ' '.join(''.join(random.choices(string.ascii_lowercase, k=random.randint(3, 10)))
for _ in range(length))
test_texts.append(text)
# Medium texts
for _ in range(100):
length = random.randint(100, 500)
text = ' '.join(''.join(random.choices(string.ascii_lowercase, k=random.randint(3, 10)))
for _ in range(length))
test_texts.append(text)
# Long texts
for _ in range(10):
length = random.randint(1000, 5000)
text = ' '.join(''.join(random.choices(string.ascii_lowercase, k=random.randint(3, 10)))
for _ in range(length))
test_texts.append(text)
# Benchmark tokenization
print("Benchmarking tokenization...")
start_time = time.time()
total_tokens = 0
for text in test_texts:
tokens = tokenizer.tokenize(text)
total_tokens += len(tokens)
tokenization_time = time.time() - start_time
# Benchmark encoding
print("Benchmarking encoding...")
start_time = time.time()
all_ids = []
for text in test_texts:
ids = tokenizer.encode(text)
all_ids.append(ids)
encoding_time = time.time() - start_time
# Benchmark decoding
print("Benchmarking decoding...")
start_time = time.time()
for ids in all_ids:
decoded = tokenizer.decode(ids)
decoding_time = time.time() - start_time
# Print results
print(f"\nBenchmark Results:")
print(f"Texts processed: {len(test_texts)}")
print(f"Total tokens: {total_tokens:,}")
print(f"Tokenization time: {tokenization_time:.3f}s")
print(f"Encoding time: {encoding_time:.3f}s")
print(f"Decoding time: {decoding_time:.3f}s")
print(f"Tokenization speed: {total_tokens/tokenization_time:.0f} tokens/sec")
print(f"Cache info: {tokenizer.get_cache_info()}")
class TokenizerTester:
"""Comprehensive testing utilities for the tokenizer"""
def __init__(self, tokenizer: TechnicalTokenizer):
self.tokenizer = tokenizer
def test_roundtrip_consistency(self, texts: List[str]) -> Dict[str, Any]:
"""Test encode/decode roundtrip consistency"""
results = {
'total_tests': len(texts),
'passed': 0,
'failed': 0,
'failures': []
}
for i, text in enumerate(texts):
try:
# Encode then decode
ids = self.tokenizer.encode(text, add_special_tokens=False)
decoded = self.tokenizer.decode(ids, skip_special_tokens=True)
# Check if roundtrip preserves meaning (not exact match due to BPE)
original_tokens = self.tokenizer.tokenize(text)
decoded_tokens = self.tokenizer.tokenize(decoded)
if len(original_tokens) == len(decoded_tokens):
results['passed'] += 1
else:
results['failed'] += 1
results['failures'].append({
'index': i,
'original': text,
'decoded': decoded,
'original_tokens': len(original_tokens),
'decoded_tokens': len(decoded_tokens)
})
except Exception as e:
results['failed'] += 1
results['failures'].append({
'index': i,
'error': str(e),
'text': text
})
return results
def test_special_tokens(self) -> Dict[str, bool]:
"""Test special token handling"""
results = {}
for token_name, token_id in self.tokenizer.special_tokens.items():
try:
# Test encoding
ids = self.tokenizer.encode(token_name, add_special_tokens=False)
expected_id = self.tokenizer.vocab.get(token_name)
# Test decoding
decoded = self.tokenizer.decode([token_id])
results[token_name] = (
expected_id in ids and
token_name in decoded
)
except Exception:
results[token_name] = False
return results
def test_edge_cases(self) -> Dict[str, bool]:
"""Test edge cases and error conditions"""
tests = {
'empty_string': True,
'whitespace_only': True,
'very_long_text': True,
'unicode_text': True,
'special_chars': True
}
try:
# Empty string
result = self.tokenizer.encode("")
tests['empty_string'] = isinstance(result, list)
except Exception:
tests['empty_string'] = False
try:
# Whitespace only
result = self.tokenizer.encode(" \n\t ")
tests['whitespace_only'] = isinstance(result, list)
except Exception:
tests['whitespace_only'] = False
try:
# Very long text
long_text = "test " * 10000
result = self.tokenizer.encode(long_text)
tests['very_long_text'] = isinstance(result, list)
except Exception:
tests['very_long_text'] = False
try:
# Unicode text
unicode_text = "Hello 世界 🌍 café naïve"
result = self.tokenizer.encode(unicode_text)
tests['unicode_text'] = isinstance(result, list)
except Exception:
tests['unicode_text'] = False
try:
# Special characters
special_text = "!@#$%^&*()_+-=[]{}|;:'\",.<>?/~`"
result = self.tokenizer.encode(special_text)
tests['special_chars'] = isinstance(result, list)
except Exception:
tests['special_chars'] = False
return tests
if __name__ == "__main__":
exit(main()) |