german-jeopardy-mt5-large-128

This model is a fine-tuned version of google/mt5-large on the lmqg/qg_dequad dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5487
  • Brevity Penalty: 0.9115
  • System Length: 19029
  • Reference Length: 20793
  • ROUGE-1: 43.40
  • ROUGE-2: 23.68
  • ROUGE-L: 41.78
  • ROUGE-Lsum: 41.79
  • Exact Match: 3.18
  • BLEU: 16.06
  • F1: 42.29

Model description

See google/mt5-large for the model architecture.
The model was trained on a single NVIDIA RTX 3090 GPU with 24GB of VRAM.

Intended uses & limitations

This model can be used for question generation on German text.

Training and evaluation data

See lmqg/qg_dequad.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 7
  • gradient_accumulation_steps: 128
  • total_train_batch_size: 128
  • optimizer: Adafactor
  • lr_scheduler_type: constant
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Counts 1 Counts 2 Counts 3 Counts 4 Totals 1 Totals 2 Totals 3 Totals 4 Precisions 1 Precisions 2 Precisions 3 Precisions 4 Brevity Penalty System Length Reference Length ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum Exact Match BLEU Mean Generated Length F1
3.9659 0.99 72 1.4145 7244 2547 1183 565 16296 14092 11888 9684 44.4526 18.0741 9.9512 5.8344 0.7379 16296 21250 0.3213 0.1608 0.3091 0.309 0.0136 10.8438 11.7786 0.3139
1.7081 1.99 145 1.2632 7865 3037 1498 759 16841 14637 12433 10229 46.7015 20.7488 12.0486 7.4201 0.7697 16841 21250 0.3577 0.189 0.3438 0.3439 0.0181 13.2044 12.225 0.3481
1.4856 3.0 218 1.1974 8608 3519 1818 969 17627 15423 13219 11015 48.8342 22.8166 13.7529 8.7971 0.8142 17627 21250 0.3969 0.2181 0.381 0.3812 0.0268 15.6014 13.0027 0.3882
1.3277 4.0 291 1.1394 9018 3702 1907 1029 17465 15261 13057 10853 51.6347 24.2579 14.6052 9.4812 0.8052 17465 21250 0.424 0.2321 0.4087 0.4085 0.0313 16.4313 12.8716 0.4156
1.2314 4.99 363 1.1193 9240 3869 1994 1076 17794 15590 13386 11182 51.9276 24.8172 14.8962 9.6226 0.8235 17794 21250 0.4336 0.2413 0.4183 0.418 0.0363 17.0718 13.2137 0.4256
1.1264 5.99 436 1.1086 9263 3908 2055 1127 17502 15298 13094 10890 52.9254 25.5458 15.6942 10.3489 0.8072 17502 21250 0.4383 0.2452 0.4239 0.4237 0.0372 17.4744 13.034 0.4309
1.0469 7.0 509 1.1038 9434 4034 2146 1189 18028 15824 13620 11416 52.3297 25.4929 15.7562 10.4152 0.8363 18028 21250 0.4433 0.2505 0.4286 0.4282 0.039 18.0906 13.422 0.4348
0.9874 8.0 582 1.0990 9746 4265 2287 1285 18351 16147 13943 11739 53.1088 26.4136 16.4025 10.9464 0.8539 18351 21250 0.457 0.2627 0.4417 0.4416 0.0454 19.1287 13.6466 0.4498
0.9488 8.99 654 1.1175 9484 4062 2158 1197 17831 15627 13423 11219 53.1883 25.9935 16.0769 10.6694 0.8255 17831 21250 0.4482 0.2548 0.4338 0.4333 0.0431 18.2172 13.2763 0.4399
0.8893 9.99 727 1.1222 9650 4205 2289 1289 18017 15813 13609 11405 53.5605 26.592 16.8198 11.3021 0.8357 18017 21250 0.4543 0.262 0.4396 0.4394 0.0463 19.064 13.4251 0.4472
0.8362 10.99 800 1.1342 9706 4232 2279 1281 18232 16028 13824 11620 53.2361 26.4038 16.4858 11.0241 0.8474 18232 21250 0.4551 0.2632 0.4395 0.4393 0.0472 19.052 13.6021 0.4473
0.7835 12.0 873 1.1427 9802 4280 2292 1285 18491 16287 14083 11879 53.0096 26.2786 16.2749 10.8174 0.8614 18491 21250 0.458 0.2634 0.4414 0.4412 0.0472 19.169 14.0168 0.4497
0.7441 12.99 945 1.1669 9816 4323 2334 1294 18498 16294 14090 11886 53.0652 26.5312 16.5649 10.8868 0.8618 18498 21250 0.4577 0.2659 0.4418 0.4417 0.0463 19.3443 13.8348 0.4493
0.7012 13.99 1018 1.1740 9856 4364 2375 1360 18537 16333 14129 11925 53.1693 26.7189 16.8094 11.4046 0.8639 18537 21250 0.4591 0.2653 0.443 0.4428 0.0476 19.7341 13.976 0.4514
0.6597 14.99 1091 1.1987 9780 4292 2336 1302 18468 16264 14060 11856 52.9565 26.3896 16.6145 10.9818 0.8602 18468 21250 0.457 0.2633 0.4418 0.4416 0.0485 19.3289 13.8802 0.4492
0.6236 16.0 1164 1.2135 9931 4388 2390 1359 18717 16513 14309 12105 53.0587 26.573 16.7028 11.2268 0.8734 18717 21250 0.4618 0.2682 0.4452 0.445 0.0495 19.8055 14.044 0.4538
0.5933 17.0 1237 1.2305 9806 4316 2366 1348 18566 16362 14158 11954 52.817 26.3782 16.7114 11.2766 0.8654 18566 21250 0.4571 0.2628 0.4407 0.4409 0.049 19.5893 14.0622 0.4485
0.5622 17.99 1309 1.2796 9787 4306 2346 1338 18559 16355 14151 11947 52.7345 26.3283 16.5783 11.1995 0.865 18559 21250 0.4549 0.2609 0.4383 0.4382 0.0476 19.4914 13.7763 0.447
0.5275 18.99 1382 1.2833 9918 4363 2374 1355 18950 16746 14542 12338 52.3377 26.054 16.3251 10.9823 0.8857 18950 21250 0.4573 0.2624 0.441 0.4408 0.0508 19.6947 14.1647 0.4499
0.4986 19.79 1440 1.3059 9879 4315 2347 1324 18931 16727 14523 12319 52.1842 25.7966 16.1606 10.7476 0.8847 18931 21250 0.4564 0.2622 0.4407 0.4403 0.0495 19.4544 14.2827 0.4478

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
7
Safetensors
Model size
1.23B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train GiantTreeG/german-jeopardy-mt5-large-128

Evaluation results