results

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4485
  • Accuracy: 0.7656
  • Precision: 0.7688
  • Recall: 0.7656
  • F1: 0.7650
  • Mrr: 0.8440

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 320
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Mrr
0.9496 1.0 2250 0.9448 0.69 0.7197 0.69 0.6896 0.8003
0.7839 2.0 4500 0.8385 0.7 0.7302 0.7 0.7032 0.8101
0.4602 3.0 6750 0.9599 0.745 0.7524 0.745 0.7421 0.8346
0.4453 4.0 9000 0.9992 0.7325 0.7474 0.7325 0.7353 0.8342
0.3919 5.0 11250 1.2636 0.7425 0.7551 0.7425 0.7413 0.8312
0.313 6.0 13500 1.3639 0.7625 0.7679 0.7625 0.7628 0.8442
0.2186 7.0 15750 1.6281 0.745 0.7566 0.745 0.7461 0.8369
0.1942 8.0 18000 1.5611 0.775 0.7822 0.775 0.7752 0.8486
0.128 9.0 20250 1.7601 0.74 0.7504 0.74 0.7412 0.8341
0.0598 10.0 22500 1.6894 0.7725 0.7761 0.7725 0.7725 0.8548
0.0699 11.0 24750 1.8025 0.765 0.7698 0.765 0.7645 0.8460
0.0292 12.0 27000 1.8754 0.76 0.7621 0.76 0.7592 0.8451

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
11
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for GeorgeIbrahim/AraBERT-MADAR

Finetuned
(6)
this model