This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset.

This version of the weights was trained with the following hyperparameters:

  • Epochs: 3 (load from best epoch)
  • Batch size: 32
  • Learning rate: 1e-4
  • Lora r: 8
  • lora_alpha : 16
  • Lora target modules: q_proj, v_proj

That is:

python train_alpaca_lora.py \
    --model_name_or_path  decapoda-research/llama-7b-hf  \
    --data_path tatsu-lab/alpaca  \
    --output_dir work_dir_lora/ \
    --num_train_epochs 3 \
    --per_device_train_batch_size 4 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 8 \
    --evaluation_strategy "no" \
    --save_strategy "steps" \
    --save_steps 500 \
    --save_total_limit 5 \
    --learning_rate 1e-4 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
    --lr_scheduler_type "cosine" \
    --model_max_length 2048 \
    --logging_steps 1 \
    --fp16 True

Instructions for running it can be found at https://github.com/jianzhnie/open-chatgpt.

Citation

Please cite the repo if you use the data or code in this repo.

@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train GaussianTech/alpaca-lora