File size: 4,372 Bytes
18f208e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
language: id
widget:
- text: "Penelitian ini bertujuan untuk menentukan identitas invertebrata laut dari Perairan Papua dengan teknik DNA barcoding"
---
# Indonesian GPT-2 finetuned on Indonesian academic journals
This is the [Indonesian gpt2-small model](https://huggingface.co/flax-community/gpt2-small-indonesian) fine-tuned to abstracts of Indonesian academic journals. All training was done on a TPUv2-8 VM sponsored by [TPU Research Cloud](https://sites.research.google/trc/).
The demo can be found [here](https://huggingface.co/spaces/flax-community/gpt2-indonesian).
## How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness,
we set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='Galuh/id-journal-gpt2')
>>> set_seed(42)
>>> generator("Sewindu sudah kita tak berjumpa,", max_length=30, num_return_sequences=5)
[{'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk mendeteksi perubahan genetik bakteri pada udang windu. Empat tahap telah dilakukan, meliputi preparasi media untuk larva,'},
{'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk identifikasi gen pengasil flavonoid. Data yang diperoleh dari hasil PCR diidentifikasi dengan teknik sekuensing'},
{'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk mengekstraksi fragmen DNA dari sampel kulit buaya dan tulang anjing, di mana proses ini melibatkan karakterisasi enzim yang'},
{'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk melakukan transformasi. Tahapan transformasi meliputi seleksi sel dengan urutan (2, 8, 16,..., 18) dan'},
{'generated_text': 'Penelitian ini menggunakan teknik DNA barcoding untuk amplifikasi genom DNA dengan menggunakan primer TG8226 dan TG806. Metode pol'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Galuh/id-journal-gpt2')
model = GPT2Model.from_pretrained('Galuh/id-journal-gpt2')
text = "Ubah dengan teks apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Galuh/id-journal-gpt2')
model = TFGPT2Model.from_pretrained('Galuh/id-journal-gpt2')
text = "Ubah dengan teks apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Limitations and bias
This model is originally the [Indonesian gpt2-small model](https://huggingface.co/flax-community/gpt2-small-indonesian), thus this model is also subject to the same [limitations and bias as the original model](https://huggingface.co/flax-community/gpt2-small-indonesian#limitations-and-bias). More detailed bias and analysis on this specific model is coming soon.
## Training data
The model was trained on a dataset of Indonesian journals. We only trained this model on the abstracts. We extract the abstract by writing a script to find any text that is located between the word "Abstrak" (abstract) and "Kata kunci" (keywords). The extraction script can be found [here](https://github.com/galuhsahid/id-journal-gpt2/). To separate each abstract, we also add an end of text token (`<|endoftext|>`) between each abstract.
The information of the sub-dataset and the distribution of the training and evaluation dataset are as follows:
| split | count | percentage |
| ---------- | ---------- | -------------- |
| train | 146,248 | 90% |
| validation | 16,250 | 10% |
## Training procedure
The model was trained on a TPUv2-8 VM provided by [TPU Research Cloud](https://sites.research.google/trc/). The training duration was `2h 30m 57s`.
### Evaluation results
The model achieves the following results without any fine-tuning (zero-shot):
| dataset | train loss | eval loss | eval perplexity |
| ---------- | ---------- | -------------- | ---------- |
| Indonesian journals dataset (abstract only) | 2.913 | 2.855 | 17.37 |
### Tracking
The training process was tracked in [TensorBoard](https://huggingface.co/Galuh/id-journal-gpt2/tensorboard). |