GaetanMichelet's picture
End of training
9cc3afa verified
|
raw
history blame
3.45 kB
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - GaetanMichelet/chat-60_ft_task-2
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: Llama-31-8B_task-2_60-samples_config-3
    results: []

Llama-31-8B_task-2_60-samples_config-3

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss
1.0751 0.8696 5 1.0960
1.1004 1.9130 11 1.0923
1.1552 2.9565 17 1.0845
1.0884 4.0 23 1.0731
1.0984 4.8696 28 1.0593
1.054 5.9130 34 1.0363
0.9646 6.9565 40 1.0060
0.9982 8.0 46 0.9700
0.9649 8.8696 51 0.9380
0.9161 9.9130 57 0.9017
0.8966 10.9565 63 0.8722
0.8314 12.0 69 0.8468
0.7747 12.8696 74 0.8286
0.8162 13.9130 80 0.8081
0.8422 14.9565 86 0.7906
0.7802 16.0 92 0.7776
0.7179 16.8696 97 0.7692
0.7191 17.9130 103 0.7605
0.6644 18.9565 109 0.7524
0.6898 20.0 115 0.7456
0.6776 20.8696 120 0.7404
0.6571 21.9130 126 0.7338
0.6177 22.9565 132 0.7289
0.6361 24.0 138 0.7246
0.6357 24.8696 143 0.7214
0.6767 25.9130 149 0.7174
0.5947 26.9565 155 0.7170
0.6182 28.0 161 0.7156
0.5899 28.8696 166 0.7157
0.5612 29.9130 172 0.7162
0.5545 30.9565 178 0.7185
0.5574 32.0 184 0.7232
0.5316 32.8696 189 0.7254
0.5276 33.9130 195 0.7338
0.4653 34.9565 201 0.7407

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1