metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_180-samples_config-4
results: []
Llama-31-8B_task-2_180-samples_config-4
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0917 | 0.9412 | 8 | 1.1326 |
1.1392 | 2.0 | 17 | 1.1271 |
1.1572 | 2.9412 | 25 | 1.1161 |
1.0856 | 4.0 | 34 | 1.0970 |
1.0789 | 4.9412 | 42 | 1.0719 |
1.0546 | 6.0 | 51 | 1.0337 |
0.9806 | 6.9412 | 59 | 0.9923 |
0.9617 | 8.0 | 68 | 0.9472 |
0.933 | 8.9412 | 76 | 0.9129 |
0.9005 | 10.0 | 85 | 0.8825 |
0.9183 | 10.9412 | 93 | 0.8578 |
0.7739 | 12.0 | 102 | 0.8335 |
0.7649 | 12.9412 | 110 | 0.8165 |
0.8197 | 14.0 | 119 | 0.8009 |
0.7488 | 14.9412 | 127 | 0.7889 |
0.7651 | 16.0 | 136 | 0.7770 |
0.6992 | 16.9412 | 144 | 0.7679 |
0.7609 | 18.0 | 153 | 0.7580 |
0.6868 | 18.9412 | 161 | 0.7510 |
0.7077 | 20.0 | 170 | 0.7437 |
0.6862 | 20.9412 | 178 | 0.7379 |
0.6939 | 22.0 | 187 | 0.7319 |
0.6564 | 22.9412 | 195 | 0.7275 |
0.6446 | 24.0 | 204 | 0.7236 |
0.6304 | 24.9412 | 212 | 0.7200 |
0.6583 | 26.0 | 221 | 0.7178 |
0.5974 | 26.9412 | 229 | 0.7159 |
0.6266 | 28.0 | 238 | 0.7159 |
0.6081 | 28.9412 | 246 | 0.7156 |
0.5853 | 30.0 | 255 | 0.7165 |
0.54 | 30.9412 | 263 | 0.7200 |
0.5438 | 32.0 | 272 | 0.7231 |
0.5163 | 32.9412 | 280 | 0.7268 |
0.5302 | 34.0 | 289 | 0.7345 |
0.4865 | 34.9412 | 297 | 0.7542 |
0.4774 | 36.0 | 306 | 0.7611 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1