File size: 2,518 Bytes
645fed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4382b2
645fed8
 
 
 
 
 
 
 
 
d201e82
645fed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: bigcode-openrail-m
base_model: bigcode/santacoder
tags:
- generated_from_trainer
model-index:
- name: santacoder-finetuned-robot2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# santacoder-finetuned-robot2

This model is a fine-tuned version of [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) on the dataset [datas.csv](./datas.csv) (généré par gpt3.5-turbo à partir de quelqes exemples).
It achieves the following results on the evaluation set:
- Loss: 0.6283

## Model description

More information needed

## Intended uses & limitations

Ce modèle permet de commander un robot à partir d'instruction en langage naturel.

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1
- training_steps: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 0.05  | 1    | 1.5944          |
| No log        | 0.1   | 2    | 2.2587          |
| No log        | 0.15  | 3    | 1.3593          |
| No log        | 0.2   | 4    | 1.6304          |
| No log        | 0.25  | 5    | 1.3971          |
| No log        | 0.3   | 6    | 1.2113          |
| No log        | 0.35  | 7    | 0.8876          |
| No log        | 0.4   | 8    | 0.9664          |
| No log        | 0.45  | 9    | 0.8842          |
| 1.4437        | 0.5   | 10   | 0.7931          |
| 1.4437        | 0.55  | 11   | 0.7410          |
| 1.4437        | 0.6   | 12   | 0.7020          |
| 1.4437        | 0.65  | 13   | 0.6665          |
| 1.4437        | 0.7   | 14   | 0.6705          |
| 1.4437        | 0.75  | 15   | 0.6589          |
| 1.4437        | 0.8   | 16   | 0.6395          |
| 1.4437        | 0.85  | 17   | 0.6358          |
| 1.4437        | 0.9   | 18   | 0.6324          |
| 1.4437        | 0.95  | 19   | 0.6286          |
| 0.5726        | 1.0   | 20   | 0.6283          |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3