File size: 6,956 Bytes
13d61ff
 
 
 
 
 
af47af9
6100a96
af47af9
6100a96
 
 
af47af9
 
 
 
 
 
13d61ff
 
 
 
 
 
 
 
6100a96
13d61ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af47af9
13d61ff
 
 
 
af47af9
 
bf3d775
6100a96
13d61ff
af47af9
 
bf3d775
13d61ff
 
 
 
 
 
af47af9
 
 
13d61ff
af47af9
13d61ff
af47af9
13d61ff
 
af47af9
 
c0d7085
 
140a2ce
c0d7085
140a2ce
c0d7085
140a2ce
13d61ff
 
140a2ce
af47af9
13d61ff
 
 
 
 
 
 
 
 
 
 
 
c0d7085
13d61ff
 
 
c0d7085
13d61ff
c0d7085
13d61ff
af47af9
 
 
 
13d61ff
 
 
 
6100a96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b8c471
13d61ff
 
 
af47af9
9394063
af47af9
 
 
 
 
6100a96
 
 
 
 
 
 
 
 
 
 
 
 
5b8c471
6100a96
5b8c471
 
6100a96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d61ff
 
 
 
af47af9
 
13d61ff
af47af9
 
 
 
 
 
140a2ce
c0d7085
 
140a2ce
 
c0d7085
 
13d61ff
c0d7085
13d61ff
6100a96
af47af9
 
 
 
 
 
 
 
13d61ff
 
140a2ce
9394063
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import csv
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
import math
import progressbar
import os

Path=os.path.dirname(os.path.abspath(__file__))+"\\"

device="cuda"

def CreateBar():
    global bar
    bar = progressbar.ProgressBar(maxval=100, \
    widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()])
    bar.start()

tokens = list("azertyuiopqsdfghjklmwxcvbnäüöß—– ")
tokensdict = {}

for i in range(len(tokens)):
    tokensdict.update({tokens[i]: [0] * i + [0] * (len(tokens) - (i + 1))})

# Ouvrir le fichier CSV
with open(Path+"top-german-verbs.csv", 'r', encoding="utf-8") as file:
    # Créer un objet lecteur CSV
    reader = [i for i in csv.reader(file)][1:]

class CSVDataset(Dataset):
    def __init__(self, features, labels):
        self.features = features
        self.labels = labels

    def __len__(self):
        return len(self.features)

    def __getitem__(self, idx):
        sample = self.features[idx], self.labels[idx]
        return sample

features = []
labels = []
padding=len(tokens)

for i in reader:
    k = []
    for j in i[2]:
        k += [tokens.index(j)]
    #k += [-1] * (25 - len(k))
    features += [torch.Tensor(k)]
    k = [len(tokens)+1]
    for j in i[8]:
        k += [tokens.index(j)]
    #k += [-1] * (25 - len(k))
    labels += [torch.Tensor(k)]

MyDataset = CSVDataset(features=features, labels=labels)

class TransformerModel(nn.Module):
    def __init__(self, vocab_size, emb_dim, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):
        super().__init__()
        self.custom_embedding = nn.Embedding(vocab_size, emb_dim, padding_idx=padding).to(device)
        self.pos_encoder = PositionalEncoding(emb_dim, dropout).to(device)
        encoder_layer = nn.TransformerEncoderLayer(emb_dim, nhead, dim_feedforward, dropout, batch_first=True).to(device)
        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers)
        decoder_layer = nn.TransformerDecoderLayer(emb_dim, nhead, dim_feedforward, dropout, batch_first=True).to(device)
        self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers)
        self.output_layer = nn.Linear(emb_dim, vocab_size).to(device)

    def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
        #print("Source:", src)
        #print("Target:", tgt)
        src_emb = self.custom_embedding(src.long())
        src_emb = self.pos_encoder(src_emb)
        #print("Source Embedding:", src_emb.shape)
        tgt_emb = self.custom_embedding(tgt.long())
        #print("Target Embedding:", tgt_emb.shape)
        tgt_emb = self.pos_encoder(tgt_emb)
        #print("Target Embedding:", tgt_emb.shape)
        encoder_output = self.transformer_encoder(src_emb, src_mask, src_key_padding_mask)
        decoder_output = self.transformer_decoder(tgt_emb, encoder_output, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask)
        output = self.output_layer(decoder_output[:, -1, :])
        #print("Output:",output.shape)
        return output

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:, :x.size(1), :]
        return self.dropout(x)
    
def collate_fn(batch):
    inputs = [item[0].to(device) for item in batch]
    targets = [item[1].to(device) for item in batch]
    inputs = pad_sequence(inputs, batch_first=True, padding_value=padding)
    targets = pad_sequence(targets, batch_first=True, padding_value=padding)
    return inputs, targets

train_loader = DataLoader(MyDataset, batch_size=32, shuffle=True, collate_fn=collate_fn)

#Embedding Dimension on epoch 10
#32:10.49
#64:6.55
#128:6.44
#256:9.63

#Head Number on epoch 15
#32:6.44
#64:5.17
#16:5.9402

#Feed Forward Dimension on epoch 15+ (minimum)
#128:5.17
#256:3.49
#512:3.44
#1024:3.23

#Num Encoder Layers on epochs 25 (minimum)
#1:3.15
#2:4.01

#Num Decoder Layers on epochs 25 (minimum)
#1:3.15
#2:2.14
#3:1.75
#4:1.60

#New model:
#Dropout: 0
#Forward Dim: 1024

model = TransformerModel(vocab_size=len(tokens)+2, emb_dim=128, nhead=32, num_encoder_layers=1, num_decoder_layers=1, dim_feedforward=512,dropout=0)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

try:
    model.load_state_dict(torch.load("data_PrateritumGPT.pth"))
    print("Sucessfully loaded model.")
except:
    pass

#print(model(torch.zeros((1,25)).to(device),torch.zeros((1,25)).to(device)))
def Prompt():
    global tokens
    global model
    inp=input("Give me a verb: ")
    src=[[]]
    tgt=[[len(tokens)+1]]
    for i in inp:
        src[0]+=[tokens.index(i)]
    str_=""
    for i in range(100):
        tgt_=torch.Tensor(tgt)
        out=model(torch.Tensor(src).to(device),tgt_.to(device)).tolist()[0]
        Best=0
        warn=tokens.index(" ")
        for k,f in enumerate(out):
            if k==len(tokens):
                f*=2
            if f>Best:
                Best=f
                Best_=k
        if Best_==len(tokens):
            break
        str_+=tokens[Best_]
        tgt[0]+=[Best_]

    print(str_)

if eval(input('Train? ')):
    epochs=eval(input("epochs "))
else:
    while True:
        Prompt()

for epoch in range(epochs):
    total_loss = 0.0

    CreateBar()

    for batch_idx, (inputs, targets) in enumerate(train_loader):

        #print("",inputs,targets)

        targets.to(device)
        inputs.to(device)

        for i in range(1, targets.shape[1]):
            optimizer.zero_grad()
            output = model(inputs, targets[:, :i])  # Shifted targets
            #print(output.shape)
            loss = loss_fn(output, targets[:, i].long())  # Reshape targets
            loss.backward()
            optimizer.step()

            total_loss += loss.item()

            mask = targets[:, i] != padding
            targets = targets[mask]
            inputs = inputs[mask]

        bar.update((batch_idx+1)/len(train_loader)*100)

        #print(f"Epoch {epoch + 1}/{epochs}, Batch {batch_idx}/{len(train_loader)}, Loss: {total_loss / (batch_idx + 1)}")

    bar.finish()

    print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(train_loader)}")

torch.save(model.state_dict(), "data_PrateritumGPT.pth")