GPT007 commited on
Commit
13d61ff
1 Parent(s): 6321bc4

Upload PrateritumGPT.py

Browse files
Files changed (1) hide show
  1. PrateritumGPT.py +119 -0
PrateritumGPT.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import csv
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.utils.data import Dataset, DataLoader
5
+ from torch.nn.utils.rnn import pad_sequence
6
+ import math
7
+
8
+ tokens = list("azertyuiopqsdfghjklmwxcvbnäüöß—– ")
9
+ tokensdict = {}
10
+
11
+ for i in range(len(tokens)):
12
+ tokensdict.update({tokens[i]: [0] * i + [0] * (len(tokens) - (i + 1))})
13
+
14
+ # Ouvrir le fichier CSV
15
+ with open("C:\\Users\\marc2\\Downloads\\7eaaf0e22461b505c749e268c0b72bc4-12ebe211a929f039791dfeaa1a019b64cadddaf1\\7eaaf0e22461b505c749e268c0b72bc4-12ebe211a929f039791dfeaa1a019b64cadddaf1\\top-german-verbs.csv", 'r', encoding="utf-8") as file:
16
+ # Créer un objet lecteur CSV
17
+ reader = [i for i in csv.reader(file)][1:]
18
+
19
+ class CSVDataset(Dataset):
20
+ def __init__(self, features, labels):
21
+ self.features = features
22
+ self.labels = labels
23
+
24
+ def __len__(self):
25
+ return len(self.features)
26
+
27
+ def __getitem__(self, idx):
28
+ sample = self.features[idx], self.labels[idx]
29
+ return sample
30
+
31
+ # Supposons que vous ayez vos données sous forme de listes
32
+ features = []
33
+ labels = []
34
+
35
+ for i in reader:
36
+ k = []
37
+ for j in i[2]:
38
+ k += [tokens.index(j)]
39
+ k += [len(tokens) + 1] * (25 - len(k))
40
+ features += [torch.Tensor(k)]
41
+ k = []
42
+ for j in i[8]:
43
+ k += [tokens.index(j)]
44
+ k += [len(tokens) + 1] * (25 - len(k))
45
+ labels += [torch.Tensor(k)]
46
+
47
+ MyDataset = CSVDataset(features=features, labels=labels)
48
+
49
+ class TransformerModel(nn.Module):
50
+ def __init__(self, vocab_size, emb_dim, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):
51
+ super().__init__()
52
+ self.custom_embedding = nn.Embedding(vocab_size, emb_dim)
53
+ self.pos_encoder = PositionalEncoding(emb_dim, dropout)
54
+ encoder_layer = nn.TransformerEncoderLayer(emb_dim, nhead, dim_feedforward, dropout)
55
+ self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers)
56
+ decoder_layer = nn.TransformerDecoderLayer(emb_dim, nhead, dim_feedforward, dropout)
57
+ self.transformer_decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers)
58
+ self.output_layer = nn.Linear(emb_dim, vocab_size)
59
+
60
+ def forward(self, src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
61
+ src_emb = self.pos_encoder(self.custom_embedding(src.long()))
62
+ tgt_emb = self.pos_encoder(self.custom_embedding(tgt.long()))
63
+ encoder_output = self.transformer_encoder(src_emb, src_mask, src_key_padding_mask)
64
+ decoder_output = self.transformer_decoder(tgt_emb, encoder_output, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask)
65
+ output = self.output_layer(decoder_output)
66
+ return output
67
+
68
+ # Définition de la classe PositionalEncoding (identique à l'exemple précédent)
69
+ class PositionalEncoding(nn.Module):
70
+ def __init__(self, d_model, dropout=0.1, max_len=5000):
71
+ super(PositionalEncoding, self).__init__()
72
+ self.dropout = nn.Dropout(p=dropout)
73
+
74
+ pe = torch.zeros(max_len, d_model)
75
+ position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
76
+ div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
77
+ pe[:, 0::2] = torch.sin(position * div_term)
78
+ pe[:, 1::2] = torch.cos(position * div_term)
79
+ pe = pe.unsqueeze(0).transpose(0, 1)
80
+ self.register_buffer('pe', pe)
81
+
82
+ def forward(self, x):
83
+ x = x + self.pe[:x.size(0), :]
84
+ return self.dropout(x)
85
+
86
+ # Préparation des données
87
+ def collate_fn(batch):
88
+ inputs = [item[0] for item in batch]
89
+ targets = [item[1] for item in batch]
90
+ inputs = pad_sequence(inputs, batch_first=True, padding_value=len(tokens) + 1)
91
+ targets = pad_sequence(targets, batch_first=True, padding_value=len(tokens) + 1)
92
+ return inputs, targets
93
+
94
+ train_loader = DataLoader(MyDataset, batch_size=32, shuffle=True, collate_fn=collate_fn)
95
+
96
+ # Définition du modèle, de la fonction de perte et de l'optimiseur
97
+ model = TransformerModel(vocab_size=len(tokens) + 2, emb_dim=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048)
98
+ loss_fn = nn.CrossEntropyLoss()
99
+ optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
100
+
101
+ epochs = 10
102
+
103
+ for epoch in range(epochs):
104
+ total_loss = 0.0
105
+
106
+ for batch_idx, (inputs, targets) in enumerate(train_loader):
107
+ optimizer.zero_grad()
108
+ output = model(inputs, targets[:, :-1]) # Shifted targets
109
+ output = output.transpose(1, 2) # Adjust shape for loss function
110
+ loss = loss_fn(output, targets[:, 1:].long()) # Shifted targets
111
+ loss.backward()
112
+ optimizer.step()
113
+
114
+ total_loss += loss.item()
115
+
116
+ if batch_idx % 100 == 0:
117
+ print(f"Epoch {epoch + 1}/{epochs}, Batch {batch_idx}/{len(train_loader)}, Loss: {total_loss / (batch_idx + 1)}")
118
+
119
+ print(f"Epoch {epoch + 1}/{epochs}, Loss: {total_loss / len(train_loader)}")