minilm-uncased-squad2 for QA on COVID-19
Overview
Language model: deepset/minilm-uncased-squad2
Language: English
Downstream-task: Extractive QA
Training data: SQuAD-style COV-19 QA
Infrastructure: A4000
Initially fine-tuned for https://github.com/CDCapobianco/COVID-Question-Answering-REST-API
## Hyperparameters
batch_size = 24 n_epochs = 3 base_LM_model = "deepset/minilm-uncased-squad2" max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup warmup_proportion = 0.1 doc_stride = 128 dev_split = 0 x_val_splits = 5 no_ans_boost = -100
license: cc-by-4.0
Performance
Single EM-Scores: [0.7441, 0.7938, 0.6666, 0.6576, 0.6445]
Single F1-Scores: [0.8261, 0.8748, 0.8188, 0.7633, 0.7935]
XVAL EM: 0.7013
XVAL f1: 0.8153
Usage
In Haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in haystack:
reader = FARMReader(model_name_or_path="Frizio/minilm-uncased-squad2-covidqa")
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "Frizio/minilm-uncased-squad2-covidqa"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.