File size: 1,586 Bytes
8d93e6a 69a3ad1 6e4a729 69a3ad1 8d93e6a 7f36677 5fc6a96 8d93e6a 7f36677 5fc6a96 8d93e6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
license: other
license_name: ihtsdo-and-nlm-licences
license_link: https://www.nlm.nih.gov/databases/umls.html
language:
- nl
- en
library_name: sentence-transformers
tags:
- medical
- biology
pipeline_tag: sentence-similarity
widget:
- source_sentence: bartonellosis
sentences:
- kattenkrabziekte
- wond, kattenkrab
- door teken overgedragen orbiviruskoorts
- kattenbont
---
# In-Context Dutch Clinical Embeddings with BioLORD & MedMentions
Do mentions sharing the same text need to have the same embedding? No!
This model supports embedding biomedical entities in both English and Dutch, but support in-context embedding of concepts, using the following template:
```
mention text [SEP] (context: ... a textual example containing mention text and some more text on both sides ...)
```
It also supports embedding mentions without context, particularly in English.
## References
### 📖 BioLORD-2023: semantic textual representations fusing large language models and clinical knowledge graph insights
Journal of the American Medical Informatics Association, 2024<br>
François Remy, Kris Demuynck, Thomas Demeester<br>
[view online](https://academic.oup.com/jamia/advance-article/doi/10.1093/jamia/ocae029/7614965)
### 📖 Annotation-preserving machine translation of English corpora to validate Dutch clinical concept extraction tools
Under review, with a preprint available on Medrxiv.org, 2024<br>
Tom Seinen, Jan Kors, Erik van Mulligen, Peter Rijnbeek<br>
[view online](https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304289.full.pdf) |