File size: 1,586 Bytes
8d93e6a
 
 
 
 
 
 
 
 
 
 
69a3ad1
6e4a729
69a3ad1
 
 
 
 
 
8d93e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f36677
5fc6a96
 
8d93e6a
 
7f36677
5fc6a96
 
8d93e6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: other
license_name: ihtsdo-and-nlm-licences
license_link: https://www.nlm.nih.gov/databases/umls.html
language:
- nl
- en
library_name: sentence-transformers
tags:
- medical
- biology
pipeline_tag: sentence-similarity
widget:
- source_sentence: bartonellosis
  sentences:
  - kattenkrabziekte
  - wond, kattenkrab
  - door teken overgedragen orbiviruskoorts
  - kattenbont
---

# In-Context Dutch Clinical Embeddings with BioLORD & MedMentions

Do mentions sharing the same text need to have the same embedding? No!

This model supports embedding biomedical entities in both English and Dutch, but support in-context embedding of concepts, using the following template:
```
mention text [SEP] (context: ... a textual example containing mention text and some more text on both sides ...)
```

It also supports embedding mentions without context, particularly in English.



## References

### 📖 BioLORD-2023: semantic textual representations fusing large language models and clinical knowledge graph insights
Journal of the American Medical Informatics Association, 2024<br>
François Remy, Kris Demuynck, Thomas Demeester<br>
[view online](https://academic.oup.com/jamia/advance-article/doi/10.1093/jamia/ocae029/7614965)

### 📖 Annotation-preserving machine translation of English corpora to validate Dutch clinical concept extraction tools
Under review, with a preprint available on Medrxiv.org, 2024<br>
Tom Seinen, Jan Kors, Erik van Mulligen, Peter Rijnbeek<br>
[view online](https://www.medrxiv.org/content/medrxiv/early/2024/03/15/2024.03.14.24304289.full.pdf)