|
--- |
|
license: other |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: intervitens/internlm2-limarp-chat-20b |
|
model-index: |
|
- name: outputs/qlora-out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
Compute power from g4rg. Big Thanks. |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
mlflow_tracking_uri: http://127.0.0.1:2340 |
|
mlflow_experiment_name: Default |
|
|
|
base_model: intervitens/internlm2-limarp-chat-20b |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: ResplendentAI/Alpaca_NSFW_Shuffled |
|
type: alpaca |
|
- path: diffnamehard/toxic-dpo-v0.1-NoWarning-alpaca |
|
type: alpaca |
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.1 |
|
output_dir: ./outputs/qlora-out |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 8192 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_target_modules: |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 4 |
|
micro_batch_size: 2 |
|
num_epochs: 4 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
loss_watchdog_threshold: 5.0 |
|
loss_watchdog_patience: 3 |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/qlora-out |
|
|
|
This model is a fine-tuned version of [intervitens/internlm2-limarp-chat-20b](https://huggingface.co/intervitens/internlm2-limarp-chat-20b) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9896 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 7 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 56 |
|
- total_eval_batch_size: 14 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.4668 | 0.0476 | 1 | 1.4615 | |
|
| 1.3541 | 0.2857 | 6 | 1.4253 | |
|
| 1.2057 | 0.5714 | 12 | 1.2120 | |
|
| 1.0818 | 0.8571 | 18 | 1.1259 | |
|
| 1.0835 | 1.1429 | 24 | 1.0750 | |
|
| 1.0503 | 1.4286 | 30 | 1.0451 | |
|
| 1.0031 | 1.7143 | 36 | 1.0288 | |
|
| 0.9728 | 2.0 | 42 | 1.0137 | |
|
| 0.8879 | 2.2857 | 48 | 1.0082 | |
|
| 0.8981 | 2.5714 | 54 | 0.9956 | |
|
| 0.8613 | 2.8571 | 60 | 0.9926 | |
|
| 0.8608 | 3.1429 | 66 | 0.9903 | |
|
| 0.7841 | 3.4286 | 72 | 0.9903 | |
|
| 0.9237 | 3.7143 | 78 | 0.9899 | |
|
| 0.868 | 4.0 | 84 | 0.9896 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |