File size: 9,452 Bytes
0394e28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
"""
An implementation of Blockwise parallel transformer https://arxiv.org/abs/2305.19370
Also include a reference implementation of memory-efficient transformer https://arxiv.org/abs/2112.05682
"""
import functools
from typing import NamedTuple
import flax.linen as nn
import jax
import jax.lax as lax
import jax.numpy as jnp
from einops import rearrange
"""
Computing ffn blockwise without materializing the large hidden tensor, training
4x longer sequences than the memory-efficient transformer.
Blockwise parallel transformer https://arxiv.org/abs/2305.19370 Liu et al. 2023
"""
def blockwise_ffn(remat_ffn, inputs, chunk_size=2048, deterministic=True):
# remat_ffn: a rematerialized ffn with policy jax.checkpoint_policies.nothing_saveable()
# inputs: (batch, seq_len, dim)
# chunk_size: the chunk size to split the sequence
inputs = rearrange(inputs, 'b (c n) d -> b c n d', c=chunk_size)
def scan_ffn(remat_ffn, carry, hidden_states):
outputs = remat_ffn(hidden_states, deterministic=deterministic)
return carry, outputs
scan_axis = inputs.ndim - 2
_, res = nn.scan(
scan_ffn,
variable_broadcast="params",
split_rngs={"params": False, "dropout": True},
in_axes=scan_axis,
out_axes=scan_axis,
)(remat_ffn, None, inputs)
res = rearrange(res, 'b c n d -> b (c n) d')
return res
"""
Compute attention blockwise without materializing the full attention matrix,
initially proposed in memory-efficient transformer https://arxiv.org/abs/2112.05682 Rabe et al. 2021;
flash attention https://arxiv.org/abs/2205.14135 Dao et al. 2022 proposes a CUDA
efficient implementation; blockwise parallel transformer https://arxiv.org/abs/2305.19370
Liu et al. 2023 proposes blockwise computing both attention and FFN, enabling 4x
longer sequences than memory-efficient/flash-attention and fusion of attention and FFN.
"""
def blockwise_attn(
query, key, value,
bias=None,
deterministic=True,
dropout_rng=None,
attn_pdrop=0.0,
causal=True,
query_chunk_size=2048,
key_chunk_size=2048,
dtype=jnp.float32,
policy=jax.checkpoint_policies.nothing_saveable(),
precision=None,
float32_logits=True,
prevent_cse=True,
):
# query, key, value: (batch, seq_len, num_heads, dim_per_head)
# bias: (batch, seq_len) can be used to mask out attention (e.g. padding)
# causal: whether to use causal mask
# policy: one of jax.checkpoint_policies
query = query / jnp.sqrt(query.shape[-1]).astype(dtype)
if float32_logits:
query = query.astype(jnp.float32)
key = key.astype(jnp.float32)
batch, q_len, num_heads, dim_per_head = query.shape
batch, kv_len, num_heads, dim_per_head = key.shape
batch, kv_len, num_heads, dim_per_head = value.shape
num_q = q_len // query_chunk_size
num_kv = kv_len // key_chunk_size
query = query.reshape((batch, num_q, query_chunk_size, num_heads, dim_per_head))
key = key.reshape((batch, num_kv, key_chunk_size, num_heads, dim_per_head))
value = value.reshape((batch, num_kv, key_chunk_size, num_heads, dim_per_head))
query = jnp.moveaxis(query, 1, 0)
key = jnp.moveaxis(key, 1, 0)
value = jnp.moveaxis(value, 1, 0)
if bias is not None:
for bias_dim, broadcast_dim in zip(bias.shape, (batch, num_heads, q_len, kv_len)):
assert bias_dim == 1 or bias_dim == broadcast_dim
if not deterministic and attn_pdrop > 0.0:
attn_dropout_rng, dropout_rng = jax.random.split(dropout_rng)
attn_dropout = jax.random.bernoulli(attn_dropout_rng, attn_pdrop, (batch, num_heads, q_len, kv_len))
else:
attn_dropout = None
_chunk_bias_fn = functools.partial(
_chunk_attention_bias,
query_chunk_size, key_chunk_size, bias, deterministic,
attn_dropout, attn_pdrop, causal, dtype)
def scan_attention(args):
query_chunk, query_chunk_idx = args
@functools.partial(jax.checkpoint, prevent_cse=prevent_cse, policy=policy)
def scan_kv_block(carry, args):
key_chunk, value_chunk, key_chunk_idx = args
(numerator, denominator, prev_max_score) = carry
attn_weights = jnp.einsum('bqhd,bkhd->bqhk', query_chunk, key_chunk, precision=precision)
bias_chunk = _chunk_bias_fn(query_chunk_idx, key_chunk_idx)
bias_chunk = jnp.moveaxis(bias_chunk, 1, 2)
attn_weights = attn_weights + bias_chunk
max_score = jnp.max(attn_weights, axis=-1, keepdims=True)
max_score = jnp.maximum(prev_max_score, max_score)
max_score = jax.lax.stop_gradient(max_score)
exp_weights = jnp.exp(attn_weights - max_score)
exp_values = jnp.einsum(
'bqhv,bvhd->bqhd', exp_weights, value_chunk, precision=precision
)
correction = jnp.exp(prev_max_score - max_score)
numerator = numerator * correction + exp_values
denominator = denominator * correction + exp_weights.sum(axis=-1, keepdims=True)
return Carry(numerator, denominator, max_score), None
def skip_upper_half(carry, args):
key_chunk, value_chunk, key_chunk_idx = args
skip_block = jnp.array(False)
if causal:
skip_block = query_chunk_idx < key_chunk_idx
return jax.lax.cond(
skip_block,
lambda carry, args: (carry, None),
scan_kv_block,
carry,
args,
)
init_carry = Carry(
jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=query.dtype),
jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=query.dtype),
(-jnp.inf) * jnp.ones((batch, query_chunk_size, num_heads, 1), dtype=query.dtype),
)
(numerator, denominator, max_score), _ = lax.scan(
skip_upper_half, init_carry, xs=(key, value, jnp.arange(0, num_kv))
)
outputs = (numerator / denominator).astype(dtype)
return outputs
_, res = lax.scan(
lambda _, x: ((), scan_attention(x)),
(), xs=(query, jnp.arange(0, num_q))
)
res = rearrange(res, 'n b c h d -> b (n c) h d')
return res
class Carry(NamedTuple):
numerator: jax.Array
denominator: jax.Array
max_so_far: jax.Array
def _chunk_attention_bias(query_chunk_size, key_chunk_size,
bias, deterministic, attn_dropout, attn_pdrop, causal,
dtype, query_chunk_idx, key_chunk_idx):
query_offset = query_chunk_idx * query_chunk_size
key_offset = key_chunk_idx * key_chunk_size
chunk_bias = jnp.zeros((1, 1, 1, 1), dtype=dtype)
if bias is not None:
chunk_bias = lax.dynamic_slice(
bias,
start_indices=(0, 0, query_offset, key_offset),
slice_sizes=(*bias.shape[:2], min(bias.shape[-2], query_chunk_size), min(bias.shape[-1], key_chunk_size)),
)
if causal:
query_idx = lax.broadcasted_iota(dtype=jnp.int32, shape=(query_chunk_size, 1), dimension=0)
key_idx = lax.broadcasted_iota(dtype=jnp.int32, shape=(1, key_chunk_size), dimension=1)
offset = query_offset - key_offset
query_idx += offset
causal_mask_value = (query_idx < key_idx) * jnp.finfo(dtype).min
chunk_bias += causal_mask_value.reshape(1, 1, *causal_mask_value.shape)
if not deterministic and attn_pdrop > 0.0:
attn_dropout_slice = lax.dynamic_slice(
attn_dropout,
start_indices=(0, 0, query_offset, key_offset),
slice_sizes=(
*attn_dropout.shape[:2],
min(attn_dropout.shape[-2], query_chunk_size),
min(attn_dropout.shape[-1], key_chunk_size),
),
)
chunk_bias += attn_dropout_slice * jnp.finfo(dtype).min
return chunk_bias.astype(dtype)
if __name__ == '__main__':
# test
def reference_attn(query, key, value, causal, dtype):
query = query / jnp.sqrt(query.shape[-1]).astype(dtype)
logits = jnp.einsum("bqhc,bkhc->bhqk", query, key)
if causal:
mask_value = jnp.finfo(logits.dtype).min
_, q_seq_len, _, _ = query.shape
_, kv_seq_len, _, _ = key.shape
mask_shape = (q_seq_len, kv_seq_len)
row_ids = jax.lax.broadcasted_iota(jnp.int32, mask_shape, 0)
col_ids = jax.lax.broadcasted_iota(jnp.int32, mask_shape, 1)
causal_mask = (row_ids < col_ids)[None, None, :, :]
logits = logits + jnp.where(causal_mask, mask_value, 0.0)
weights = jax.nn.softmax(logits, axis=-1)
out = jnp.einsum("bhqk,bkhc->bqhc", weights, value)
return out
# random inputs
shape = (1, 32, 8, 64)
query = jax.random.normal(jax.random.PRNGKey(0), shape)
key = jax.random.normal(jax.random.PRNGKey(1), shape)
value = jax.random.normal(jax.random.PRNGKey(2), shape)
causal = True
chunk_size = 4
policy = jax.checkpoint_policies.nothing_saveable()
blockwise = blockwise_attn(query, key, value, None, False, None, 0.0, causal, chunk_size, chunk_size, jnp.float32, policy, 'float32', True, False)
reference = reference_attn(query, key, value, causal, 'float32')
assert jnp.allclose(reference, blockwise, atol=1e-6)
|