Text Generation
Transformers
Safetensors
Finnish
llama
finnish
conversational
text-generation-inference
File size: 16,271 Bytes
a85f909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import dataclasses
import pprint
import time
from functools import partial
import json
import base64
from multiprocessing import Pool

import h5py
import mlxu
from ml_collections.config_dict import config_dict
from ml_collections import ConfigDict
from tqdm import tqdm, trange
import numpy as np

from datasets import load_dataset, load_from_disk


class DatasetFactory(object):
    """ Datset builder class. """

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.type = 'huggingface'
        config.text_processor = TextProcessor.get_default_config()
        config.huggingface_dataset = HuggingfaceDataset.get_default_config()
        config.json_dataset = JsonDataset.get_default_config()

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    @classmethod
    def load_dataset(cls, config, tokenizer, **kwargs):
        config = cls.get_default_config(config)
        text_processor = TextProcessor(config.text_processor, tokenizer)
        if config.type == 'huggingface':
            return HuggingfaceDataset(
                config.huggingface_dataset, tokenizer, text_processor, **kwargs
            )
        elif config.type == 'json':
            return JsonDataset(config.json_dataset, tokenizer, text_processor, **kwargs)
        else:
            raise ValueError(f'Unknown dataset type: {config.type}')

    def __init__(self):
        raise ValueError('DatasetFactory is a static class and should not be instantiated.')


class TextProcessor(object):
    """ Example processor that converts a dictionary of texts into tokens. """

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.fields_from_example = ''
        config.fields = ''
        config.subfield_separator = ' '
        config.add_bos_token = True
        config.add_eos_token = True
        config.prepend_text = ''
        config.base64_token_dtype = 'i4'
        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    def __init__(self, config, tokenizer):
        self.config = self.get_default_config(config)
        assert self.config.fields != '' or self.config.fields_from_example != '', (
            'Either fields or fields_from_example must be specified.'
        )
        self.tokenizer = tokenizer

    def __call__(self, example, has_aux=False):
        if has_aux:
            example, *aux = example
        else:
            aux = tuple()
        token_buffer = []
        loss_mask_buffer = []

        if self.config.add_bos_token:
            token_buffer.append(self.tokenizer.bos_token_id)
            loss_mask_buffer.append(0.0)

        if self.config.fields_from_example != '':
            fields = example[self.config.fields_from_example].split(',')
        else:
            fields = self.config.fields.split(',')

        for i, field in enumerate(fields):
            if field.startswith('[') and field.endswith(']'):
                # No loss for this field.
                field = field[1:-1]
                mask = 0.0
            else:
                mask = 1.0

            if field.startswith('<|') and field.endswith('|>'):
                # Special tokens.
                field = field[2:-2]
                if field == 'bos':
                    token_buffer.append(self.tokenizer.bos_token_id)
                elif field == 'eos':
                    token_buffer.append(self.tokenizer.eos_token_id)
                else:
                    # Token ID specified directly.
                    token_buffer.append(int(field))
                loss_mask_buffer.append(mask)
            elif field.startswith('{') and field.endswith('}'):
                field = field[1:-1]
                # Base64 encoded raw tokens.
                tokens = np.frombuffer(
                    base64.b64decode(example[field]),
                    dtype=self.config.base64_token_dtype
                ).tolist()
                token_buffer.extend(tokens)
                loss_mask_buffer.extend([mask for _ in range(len(tokens))])
            else:
                subfields = field.split('+')
                text = self.config.subfield_separator.join(
                    [example[subfield] for subfield in subfields]
                )
                if i == 0:
                    text = self.config.prepend_text + text
                tokens = self.tokenizer.encode(text)
                token_buffer.extend(tokens)
                loss_mask_buffer.extend([mask for _ in range(len(tokens))])

        if self.config.add_eos_token:
            token_buffer.append(self.tokenizer.eos_token_id)
            loss_mask_buffer.append(1.0)

        return token_buffer, loss_mask_buffer, *aux


class HuggingfaceDataset(object):
    """ Huggingface dataset, where the dataset is loaded using the huggingface
        datasets.load_dataset() function.
    """

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.path = 'c4'
        config.name = 'en'
        config.split = 'train'
        config.streaming = False
        config.seq_length = 1024
        config.batch_size = 8
        config.always_start_with_bos = False
        config.start_seek_loc = 0
        config.tokens_count_at_start = 0
        config.batch_token_dtype = 'i4'

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    def __init__(self, config, tokenizer, text_processor, eval_dataset=False):
        self.config = self.get_default_config(config)
        name = self.config.name if self.config.name != '' else None
        split = self.config.split if self.config.split != '' else None
        self._tokenizer = tokenizer
        self._text_processor = text_processor
        self._dataset = load_from_disk(
            self.config.path
        )[split]
        self._dataset = self._dataset.to_iterable_dataset(num_shards=128 if len(self._dataset) > 128 else len(self._dataset))
        self._eval_dataset = eval_dataset
        self._train_epochs = 0
        self._dataset_loc = self.config.start_seek_loc
        self._total_tokens = self.config.tokens_count_at_start
        self._index = 0

    def __iter__(self):
        chunk_size = self.config.batch_size * self.config.seq_length
        total_tokens = 0
        while True:
            token_buffer = []
            loss_mask_buffer = []
            if not self._eval_dataset:
                self._shuffle()
            for index, example in enumerate(self._dataset):
                self._index = index
                if not self._eval_dataset and self._dataset_loc > index:
                    continue
                tokens, loss_masks = self.text_processor(example)
                token_buffer.extend(tokens)
                loss_mask_buffer.extend(loss_masks)
                while len(token_buffer) > chunk_size + 1:
                    self._total_tokens += chunk_size
                    metrics = {
                        'dataset_example_index': index,
                        'dataset_total_tokens': self._total_tokens,
                        'epoch': self._train_epochs,
                    }
                    batch = {
                        'input_tokens': np.array(token_buffer[:chunk_size], dtype=self.config.batch_token_dtype).reshape(
                            self.config.batch_size, -1
                        ),
                        'target_tokens': np.array(token_buffer[1:chunk_size + 1], dtype=self.config.batch_token_dtype).reshape(
                            self.config.batch_size, -1
                        ),
                        'loss_masks': np.array(loss_mask_buffer[1:chunk_size + 1], dtype=np.float32).reshape(
                            self.config.batch_size, -1
                        ),
                    }
                    if self.config.always_start_with_bos:
                        batch['input_tokens'][:, 0] = self.tokenizer.bos_token_id
                    yield batch, metrics
                    token_buffer = token_buffer[chunk_size:]
                    loss_mask_buffer = loss_mask_buffer[chunk_size:]

            if self._eval_dataset:
                break
            else:
                self._dataset_loc = 0
                self._shuffle()
                self._train_epochs += 1
                print(f"TRAIN {self._train_epochs} EPOCH DONE")

    def _shuffle(self):
        self._dataset = self._dataset.shuffle(buffer_size=100)

    def get_state_dict(self):
        return dict(
            config=self.config,
            dataset_loc=self._index,
            total_tokens=self._total_tokens,
            epochs=self._train_epochs,
        )

    def load_state_dict(self, state_dict):
        if 'config' in state_dict:
            self.config.update(ConfigDict(state_dict['config']))
        self._dataset_loc = state_dict.get('dataset_loc', self.config.start_seek_loc)
        self._total_tokens = state_dict.get('total_tokens', self.config.tokens_count_at_start)
        self._train_epochs = state_dict.get('epochs', 0)

    @property
    def seq_length(self):
        return self.config.seq_length

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def text_processor(self):
        return self._text_processor

    @property
    def dataset(self):
        return self._dataset

    @property
    def vocab_size(self):
        return len(self._tokenizer)


class JsonDataset(object):
    """ JSON dataset, where each line of the data file contains a JSON
        dictionary with text fields.
    """

    @staticmethod
    def get_default_config(updates=None):
        config = ConfigDict()
        config.path = ''
        config.seq_length = 1024
        config.batch_size = 8
        config.always_start_with_bos = False
        config.start_seek_loc = 0
        config.example_index_at_start = 0
        config.tokens_count_at_start = 0
        config.tokenizer_processes = 1
        config.tokenizer_parallel_chunk_size = 32
        config.tokenizer_parallel_batch_size = 1024
        config.throughput_average_window_size = 200

        if updates is not None:
            config.update(ConfigDict(updates).copy_and_resolve_references())
        return config

    def __init__(self, config, tokenizer, text_processor):
        self.config = self.get_default_config(config)
        assert self.config.path != ''
        self._tokenizer = tokenizer
        self._text_processor = text_processor
        self._index = self.config.example_index_at_start
        self._file_loc = self.config.start_seek_loc
        self._total_tokens = self.config.tokens_count_at_start

    def parse_json(self, line):
        if not line or line == '\n':
            return None
        try:
            data = json.loads(line)
        except json.decoder.JSONDecodeError:
            print(f'Error parsing json line:\n{line}')
            return None
        return data

    def json_iterator(self):
        with mlxu.open_file(self.config.path, 'r') as fin:
            fin.seek(self._file_loc)
            while True:
                line = fin.readline()
                self._file_loc = fin.tell()
                if not line:   # Reached EOF
                    self._index = 0
                    fin.seek(0)
                    continue

                data = self.parse_json(line)
                if data is not None:
                    # JSON parsing succeeded
                    yield data, self._file_loc, self._index
                self._index += 1

    def batched(self, iterator, batch_size):
        batch = []
        for example in iterator:
            batch.append(example)
            if len(batch) == batch_size:
                yield batch
                batch = []
        if len(batch) > 0:
            yield batch

    def parallel_example_iterator(self):
        if self.config.tokenizer_processes == 1:
            for example, loc, index in self.json_iterator():
                yield self.text_processor((example, loc, index), has_aux=True)
        else:
            process_pool = Pool(self.config.tokenizer_processes)
            batched_iterator = self.batched(
                self.json_iterator(), self.config.tokenizer_parallel_batch_size
            )
            with process_pool as pool:
                map_fn = partial(self.text_processor, has_aux=True)
                next_batch = pool.map_async(
                    map_fn, next(batched_iterator),
                    chunksize=self.config.tokenizer_parallel_chunk_size
                )
                while True:
                    current_batch = next_batch
                    next_batch = pool.map_async(
                        map_fn, next(batched_iterator),
                        chunksize=self.config.tokenizer_parallel_chunk_size
                    )
                    for example in current_batch.get():
                        yield example

    def __iter__(self):
        chunk_size = self.config.batch_size * self.config.seq_length
        token_buffer = []
        loss_mask_buffer = []
        last_time = 0.0
        step_times = []
        start_time = time.time()
        start_tokens = self._total_tokens
        for tokens, loss_masks, loc, index in self.parallel_example_iterator():
            token_buffer.extend(tokens)
            loss_mask_buffer.extend(loss_masks)
            while len(token_buffer) > chunk_size + 1:
                self._total_tokens += chunk_size
                step_times.append(time.time() - last_time)
                last_time = time.time()
                if len(step_times) > self.config.throughput_average_window_size:
                    step_times = step_times[-self.config.throughput_average_window_size:]
                average_throughput = chunk_size / np.mean(step_times)
                accumulated_throughput = (
                    (self._total_tokens - start_tokens) / (time.time() - start_time)
                )
                metrics = {
                    'dataset_file_loc': loc,
                    'dataset_example_index': index,
                    'dataset_total_tokens': self._total_tokens,
                    'dataset_accumulated_tps': accumulated_throughput,
                    'dataset_average_tps': average_throughput,
                }
                batch = {
                    'input_tokens': np.array(token_buffer[:chunk_size], dtype=np.int32).reshape(
                        self.config.batch_size, -1
                    ),
                    'target_tokens': np.array(token_buffer[1:chunk_size + 1], dtype=np.int32).reshape(
                        self.config.batch_size, -1
                    ),
                    'loss_masks': np.array(loss_mask_buffer[1:chunk_size + 1], dtype=np.float32).reshape(
                        self.config.batch_size, -1
                    ),
                }
                if self.config.always_start_with_bos:
                    batch['input_tokens'][:, 0] = self.tokenizer.bos_token_id
                yield batch, metrics
                token_buffer = token_buffer[chunk_size:]
                loss_mask_buffer = loss_mask_buffer[chunk_size:]

    def get_state_dict(self):
        return dict(
            config=self.config,
            index=self._index,
            file_loc=self._file_loc,
            total_tokens=self._total_tokens,
        )

    def load_state_dict(self, state_dict):
        if 'config' in state_dict:
            self.config.update(ConfigDict(state_dict['config']))
        self._index = state_dict.get('index', self.config.example_index_at_start)
        self._file_loc = state_dict.get('file_loc', self.config.start_seek_loc)
        self._total_tokens = state_dict.get('total_tokens', self.config.tokens_count_at_start)

    @property
    def seq_length(self):
        return self.config.seq_length

    @property
    def tokenizer(self):
        return self._tokenizer

    @property
    def text_processor(self):
        return self._text_processor

    @property
    def vocab_size(self):
        return len(self.tokenizer)