Edit model card

FinBERT is a BERT model pre-trained on financial communication text. The purpose is to enhance financial NLP research and practice.


It is trained on the following three financial communication corpus. The total corpora size is 4.9B tokens.

  • Corporate Reports 10-K & 10-Q: 2.5B tokens
  • Earnings Call Transcripts: 1.3B tokens
  • Analyst Reports: 1.1B tokens

The entire training is done using an NVIDIA DGX-1 machine. The server has 4 Tesla P100 GPUs, providing a total of 128 GB of GPU memory. This machine enables us to train the BERT models using a batch size of 128. We utilize Horovord framework for multi-GPU training. Overall, the total time taken to perform pretraining for one model is approximately 2 days.

More details on FinBERT's pre-training process can be found at: https://arxiv.org/abs/2006.08097

FinBERT can be further fine-tuned on downstream tasks. Specifically, we have fine-tuned FinBERT on an analyst sentiment classification task, and the fine-tuned model is shared at https://huggingface.co/demo-org/auditor_review_model


Load the model directly from Transformers:

from transformers import AutoModelForMaskedLM
model = AutoModelForMaskedLM.from_pretrained("demo-org/finbert-pretrain", use_auth_token=True)


Please contact the Data Science COE if you have more questions about this pre-trained model

Demo Model

This model card is for demo purposes. The original model card for this model is https://huggingface.co/yiyanghkust/finbert-pretrain.

Downloads last month
Hosted inference API
Mask token: [MASK]
This model can be loaded on the Inference API on-demand.