ESPnet2 ASR model

Fhrozen/test_an4

This model was trained by Fhrozen using an4 recipe in espnet.

Demo: How to use in ESPnet2

cd espnet
git checkout b8df4c928e132acff78d196988bdb68a66987952
pip install -e .
cd egs2/an4/asr1
./run.sh --skip_data_prep false --skip_train true --download_model Fhrozen/test_an4

RESULTS

Environments

  • date: Wed Oct 20 00:00:46 JST 2021
  • python version: 3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]
  • espnet version: espnet 0.10.4a1
  • pytorch version: pytorch 1.9.0
  • Git hash: b8df4c928e132acff78d196988bdb68a66987952
    • Commit date: Tue Oct 19 07:48:11 2021 -0400

asr_train_raw_en_bpe30

WER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test 130 773 4.0 22.3 73.7 0.1 96.1 100.0
inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev 100 591 2.7 21.8 75.5 0.0 97.3 100.0

CER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test 130 2565 17.2 16.4 66.4 1.0 83.8 100.0
inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev 100 1915 15.5 16.4 68.1 0.9 85.5 100.0

TER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test 130 2695 21.1 15.6 63.3 0.9 79.9 100.0
inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev 100 2015 19.4 15.6 65.0 0.9 81.5 100.0

ASR config

expand
config: null
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_raw_en_bpe30
ngpu: 0
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: null
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 40
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - train
    - loss
    - min
-   - valid
    - loss
    - min
-   - train
    - acc
    - max
-   - valid
    - acc
    - max
keep_nbest_models:
- 10
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_bpe30/train/speech_shape
- exp/asr_stats_raw_en_bpe30/train/text_shape.bpe
valid_shape_file:
- exp/asr_stats_raw_en_bpe30/valid/speech_shape
- exp/asr_stats_raw_en_bpe30/valid/text_shape.bpe
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
-   - dump/raw/train_nodev/wav.scp
    - speech
    - sound
-   - dump/raw/train_nodev/text
    - text
    - text
valid_data_path_and_name_and_type:
-   - dump/raw/train_dev/wav.scp
    - speech
    - sound
-   - dump/raw/train_dev/text
    - text
    - text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adadelta
optim_conf: {}
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- โ–
- T
- E
- O
- R
- Y
- A
- H
- U
- S
- I
- F
- B
- L
- P
- D
- G
- M
- C
- V
- X
- J
- K
- Z
- W
- N
- Q
- <sos/eos>
init: null
input_size: null
ctc_conf:
    dropout_rate: 0.0
    ctc_type: builtin
    reduce: true
    ignore_nan_grad: true
model_conf:
    ctc_weight: 0.5
    ignore_id: -1
    lsm_weight: 0.0
    length_normalized_loss: false
    report_cer: true
    report_wer: true
    sym_space: <space>
    sym_blank: <blank>
    extract_feats_in_collect_stats: true
use_preprocessor: true
token_type: bpe
bpemodel: data/en_token_list/bpe_unigram30/bpe.model
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
frontend: default
frontend_conf:
    fs: 16k
specaug: null
specaug_conf: {}
normalize: global_mvn
normalize_conf:
    stats_file: exp/asr_stats_raw_en_bpe30/train/feats_stats.npz
preencoder: null
preencoder_conf: {}
encoder: rnn
encoder_conf: {}
postencoder: null
postencoder_conf: {}
decoder: rnn
decoder_conf: {}
required:
- output_dir
- token_list
version: 0.10.4a1
distributed: false

LM config

expand
  config: conf/train_lm.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/lm_train_lm_en_bpe30
ngpu: 0
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: null
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 40
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - loss
    - min
keep_nbest_models: 1
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 256
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/lm_stats_en_bpe30/train/text_shape.bpe
valid_shape_file:
- exp/lm_stats_en_bpe30/valid/text_shape.bpe
batch_type: folded
valid_batch_type: null
fold_length:
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
-   - dump/raw/lm_train.txt
    - text
    - text
valid_data_path_and_name_and_type:
-   - dump/raw/train_dev/text
    - text
    - text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
    lr: 0.1
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- โ–
- T
- E
- O
- R
- Y
- A
- H
- U
- S
- I
- F
- B
- L
- P
- D
- G
- M
- C
- V
- X
- J
- K
- Z
- W
- N
- Q
- <sos/eos>
init: null
model_conf:
    ignore_id: 0
use_preprocessor: true
token_type: bpe
bpemodel: data/en_token_list/bpe_unigram30/bpe.model
non_linguistic_symbols: null
cleaner: null
g2p: null
lm: seq_rnn
lm_conf:
    unit: 650
    nlayers: 2
required:
- output_dir
- token_list
version: 0.10.4a1
distributed: false
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.