File size: 11,980 Bytes
32a710d cca87ef 32a710d cca87ef 32a710d cca87ef 32a710d aba0753 32a710d cca87ef 32a710d a43e296 32a710d a43e296 32a710d a43e296 aba0753 a43e296 32a710d aba0753 32a710d aba0753 32a710d aba0753 32a710d fddb2c5 cca87ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
---
language:
- en
license: apache-2.0
datasets:
- databricks/databricks-dolly-15k
- Felladrin/ChatML-databricks-dolly-15k
- euclaise/reddit-instruct-curated
- Felladrin/ChatML-reddit-instruct-curated
- THUDM/webglm-qa
- Felladrin/ChatML-WebGLM-QA
- starfishmedical/webGPT_x_dolly
- Felladrin/ChatML-webGPT_x_dolly
- LDJnr/Capybara
- Felladrin/ChatML-Capybara
- Open-Orca/SlimOrca-Dedup
- Felladrin/ChatML-SlimOrca-Dedup
- HuggingFaceH4/ultrachat_200k
- Felladrin/ChatML-ultrachat_200k
- nvidia/HelpSteer
- Felladrin/ChatML-HelpSteer
- sablo/oasst2_curated
- Felladrin/ChatML-oasst2_curated
- CohereForAI/aya_dataset
- Felladrin/ChatML-aya_dataset
- argilla/distilabel-capybara-dpo-7k-binarized
- Felladrin/ChatML-distilabel-capybara-dpo-7k-binarized
- argilla/distilabel-intel-orca-dpo-pairs
- Felladrin/ChatML-distilabel-intel-orca-dpo-pairs
- argilla/ultrafeedback-binarized-preferences
- Felladrin/ChatML-ultrafeedback-binarized-preferences
- sablo/oasst2_dpo_pairs_en
- Felladrin/ChatML-oasst2_dpo_pairs_en
- NeuralNovel/Neural-DPO
- Felladrin/ChatML-Neural-DPO
base_model: Felladrin/Minueza-32M-Base
pipeline_tag: text-generation
widget:
- messages:
- role: system
content: You are a career counselor. The user will provide you with an individual
looking for guidance in their professional life, and your task is to assist
them in determining what careers they are most suited for based on their skills,
interests, and experience. You should also conduct research into the various
options available, explain the job market trends in different industries, and
advice on which qualifications would be beneficial for pursuing particular fields.
- role: user
content: Heya!
- role: assistant
content: Hi! How may I help you?
- role: user
content: I am interested in developing a career in software engineering. What
would you recommend me to do?
- messages:
- role: system
content: You are a highly knowledgeable assistant. Help the user as much as you
can.
- role: user
content: How can I become a healthier person?
- messages:
- role: system
content: You are a helpful assistant who gives creative responses.
- role: user
content: Write the specs of a game about mages in a fantasy world.
- messages:
- role: system
content: You are a helpful assistant who answers user's questions with details.
- role: user
content: Tell me about the pros and cons of social media.
- messages:
- role: system
content: You are a helpful assistant who answers user's questions with details
and curiosity.
- role: user
content: What are some potential applications for quantum computing?
inference:
parameters:
max_new_tokens: 250
do_sample: true
temperature: 0.65
top_p: 0.55
top_k: 35
repetition_penalty: 1.176
model-index:
- name: Minueza-32M-Chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 20.39
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 26.54
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.75
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 47.27
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.99
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Felladrin/Minueza-32M-Chat
name: Open LLM Leaderboard
---
# Minueza-32M-Chat: A chat model with 32 million parameters
- Base model: [Felladrin/Minueza-32M-Base](https://huggingface.co/Felladrin/Minueza-32M-Base)
- Datasets used during SFT:
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-databricks-dolly-15k)] [databricks/databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-reddit-instruct-curated)] [euclaise/reddit-instruct-curated](https://huggingface.co/datasets/euclaise/reddit-instruct-curated)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-WebGLM-QA)] [THUDM/webglm-qa](https://huggingface.co/datasets/THUDM/webglm-qa)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-webGPT_x_dolly)] [starfishmedical/webGPT_x_dolly](https://huggingface.co/datasets/starfishmedical/webGPT_x_dolly)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-Capybara)] [LDJnr/Capybara](https://huggingface.co/datasets/LDJnr/Capybara)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-SlimOrca-Dedup)] [Open-Orca/SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-ultrachat_200k)] [HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-HelpSteer)] [nvidia/HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-oasst2_curated)] [sablo/oasst2_curated](https://huggingface.co/datasets/sablo/oasst2_curated)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-aya_dataset)] [CohereForAI/aya_dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset)
- Datasets used during DPO:
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-distilabel-capybara-dpo-7k-binarized)] [argilla/distilabel-capybara-dpo-7k-binarized](https://huggingface.co/datasets/argilla/distilabel-capybara-dpo-7k-binarized)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-distilabel-intel-orca-dpo-pairs)] [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-ultrafeedback-binarized-preferences)] [argilla/ultrafeedback-binarized-preferences](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-oasst2_dpo_pairs_en)] [sablo/oasst2_dpo_pairs_en](https://huggingface.co/datasets/sablo/oasst2_dpo_pairs_en)
- [[ChatML](https://huggingface.co/datasets/Felladrin/ChatML-Neural-DPO)] [NeuralNovel/Neural-DPO](https://huggingface.co/datasets/NeuralNovel/Neural-DPO)
- License: [Apache License 2.0](https://huggingface.co/Felladrin/Minueza-32M-Chat/resolve/main/license.txt)
- Availability in other ML formats:
- GGUF: [Felladrin/gguf-Minueza-32M-Chat](https://huggingface.co/Felladrin/gguf-Minueza-32M-Chat)
- ONNX: [Felladrin/onnx-Minueza-32M-Chat](https://huggingface.co/Felladrin/onnx-Minueza-32M-Chat)
## Recommended Prompt Format
```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
```
## Recommended Inference Parameters
```yml
do_sample: true
temperature: 0.65
top_p: 0.55
top_k: 35
repetition_penalty: 1.176
```
## Usage Example
```python
from transformers import pipeline
generate = pipeline("text-generation", "Felladrin/Minueza-32M-Chat")
messages = [
{
"role": "system",
"content": "You are a helpful assistant who answers the user's questions with details and curiosity.",
},
{
"role": "user",
"content": "What are some potential applications for quantum computing?",
},
]
prompt = generate.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
output = generate(
prompt,
max_new_tokens=256,
do_sample=True,
temperature=0.65,
top_k=35,
top_p=0.55,
repetition_penalty=1.176,
)
print(output[0]["generated_text"])
```
## How it was trained
This model was trained with [SFT Trainer](https://huggingface.co/docs/trl/main/en/sft_trainer) and [DPO Trainer](https://huggingface.co/docs/trl/main/en/dpo_trainer), in several sessions, using the following settings:
For Supervised Fine-Tuning:
| Hyperparameter | Value |
| :-------------------------- | :-------------------------------------------- |
| learning_rate | 2e-5 |
| total_train_batch_size | 24 |
| max_seq_length | 2048 |
| weight_decay | 0 |
| warmup_ratio | 0.02 |
For Direct Preference Optimization:
| Hyperparameter | Value |
| :-------------------------- | :-------------------------------------------- |
| learning_rate | 7.5e-7 |
| total_train_batch_size | 6 |
| max_length | 2048 |
| max_prompt_length | 1536 |
| max_steps | 200 |
| weight_decay | 0 |
| warmup_ratio | 0.02 |
| beta | 0.1 |
## [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Felladrin__Minueza-32M-Chat)
| Metric |Value|
|---------------------------------|----:|
|Avg. |28.49|
|AI2 Reasoning Challenge (25-Shot)|20.39|
|HellaSwag (10-Shot) |26.54|
|MMLU (5-Shot) |25.75|
|TruthfulQA (0-shot) |47.27|
|Winogrande (5-shot) |50.99|
|GSM8k (5-shot) | 0.00|
|