File size: 6,099 Bytes
4e3cd77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
import torch.nn as nn

from .base_model import BaseModel
from .blocks import (
    FeatureFusionBlock_custom,
    Interpolate,
    _make_encoder,
    forward_beit,
    forward_swin,
    forward_levit,
    forward_vit,
)
from .backbones.levit import stem_b4_transpose
from timm.models.layers import get_act_layer


def _make_fusion_block(features, use_bn, size = None):
    return FeatureFusionBlock_custom(
        features,
        nn.ReLU(False),
        deconv=False,
        bn=use_bn,
        expand=False,
        align_corners=True,
        size=size,
    )


class DPT(BaseModel):
    def __init__(
        self,
        head,
        features=256,
        backbone="vitb_rn50_384",
        readout="project",
        channels_last=False,
        use_bn=False,
        **kwargs
    ):

        super(DPT, self).__init__()

        self.channels_last = channels_last

        # For the Swin, Swin 2, LeViT and Next-ViT Transformers, the hierarchical architectures prevent setting the 
        # hooks freely. Instead, the hooks have to be chosen according to the ranges specified in the comments.
        hooks = {
            "beitl16_512": [5, 11, 17, 23],
            "beitl16_384": [5, 11, 17, 23],
            "beitb16_384": [2, 5, 8, 11],
            "swin2l24_384": [1, 1, 17, 1],  # Allowed ranges: [0, 1], [0,  1], [ 0, 17], [ 0,  1]
            "swin2b24_384": [1, 1, 17, 1],                  # [0, 1], [0,  1], [ 0, 17], [ 0,  1]
            "swin2t16_256": [1, 1, 5, 1],                   # [0, 1], [0,  1], [ 0,  5], [ 0,  1]
            "swinl12_384": [1, 1, 17, 1],                   # [0, 1], [0,  1], [ 0, 17], [ 0,  1]
            "next_vit_large_6m": [2, 6, 36, 39],            # [0, 2], [3,  6], [ 7, 36], [37, 39]
            "levit_384": [3, 11, 21],                       # [0, 3], [6, 11], [14, 21]
            "vitb_rn50_384": [0, 1, 8, 11],
            "vitb16_384": [2, 5, 8, 11],
            "vitl16_384": [5, 11, 17, 23],
        }[backbone]

        if "next_vit" in backbone:
            in_features = {
                "next_vit_large_6m": [96, 256, 512, 1024],
            }[backbone]
        else:
            in_features = None

        # Instantiate backbone and reassemble blocks
        self.pretrained, self.scratch = _make_encoder(
            backbone,
            features,
            False, # Set to true of you want to train from scratch, uses ImageNet weights
            groups=1,
            expand=False,
            exportable=False,
            hooks=hooks,
            use_readout=readout,
            in_features=in_features,
        )

        self.number_layers = len(hooks) if hooks is not None else 4
        size_refinenet3 = None
        self.scratch.stem_transpose = None

        if "beit" in backbone:
            self.forward_transformer = forward_beit
        elif "swin" in backbone:
            self.forward_transformer = forward_swin
        elif "next_vit" in backbone:
            from .backbones.next_vit import forward_next_vit
            self.forward_transformer = forward_next_vit
        elif "levit" in backbone:
            self.forward_transformer = forward_levit
            size_refinenet3 = 7
            self.scratch.stem_transpose = stem_b4_transpose(256, 128, get_act_layer("hard_swish"))
        else:
            self.forward_transformer = forward_vit

        self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
        self.scratch.refinenet3 = _make_fusion_block(features, use_bn, size_refinenet3)
        if self.number_layers >= 4:
            self.scratch.refinenet4 = _make_fusion_block(features, use_bn)

        self.scratch.output_conv = head


    def forward(self, x):
        if self.channels_last == True:
            x.contiguous(memory_format=torch.channels_last)

        layers = self.forward_transformer(self.pretrained, x)
        if self.number_layers == 3:
            layer_1, layer_2, layer_3 = layers
        else:
            layer_1, layer_2, layer_3, layer_4 = layers

        layer_1_rn = self.scratch.layer1_rn(layer_1)
        layer_2_rn = self.scratch.layer2_rn(layer_2)
        layer_3_rn = self.scratch.layer3_rn(layer_3)
        if self.number_layers >= 4:
            layer_4_rn = self.scratch.layer4_rn(layer_4)

        if self.number_layers == 3:
            path_3 = self.scratch.refinenet3(layer_3_rn, size=layer_2_rn.shape[2:])
        else:
            path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
            path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
        path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
        path_1 = self.scratch.refinenet1(path_2, layer_1_rn)

        if self.scratch.stem_transpose is not None:
            path_1 = self.scratch.stem_transpose(path_1)

        out = self.scratch.output_conv(path_1)

        return out


class DPTDepthModel(DPT):
    def __init__(self, path=None, non_negative=True, **kwargs):
        features = kwargs["features"] if "features" in kwargs else 256
        head_features_1 = kwargs["head_features_1"] if "head_features_1" in kwargs else features
        head_features_2 = kwargs["head_features_2"] if "head_features_2" in kwargs else 32
        kwargs.pop("head_features_1", None)
        kwargs.pop("head_features_2", None)

        head = nn.Sequential(
            nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1),
            Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
            nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
            nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
            nn.ReLU(True) if non_negative else nn.Identity(),
            nn.Identity(),
        )

        super().__init__(head, **kwargs)

        if path is not None:
           self.load(path)

    def forward(self, x):
        return super().forward(x).squeeze(dim=1)