File size: 13,785 Bytes
0bd87d6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79e437251360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e4372513f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e437251480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e437251510>", "_build": "<function ActorCriticPolicy._build at 0x79e4372515a0>", "forward": "<function ActorCriticPolicy.forward at 0x79e437251630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79e4372516c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e437251750>", "_predict": "<function ActorCriticPolicy._predict at 0x79e4372517e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e437251870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e437251900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79e437251990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79e4371e6900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711932094190020900, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADoeCT74lJ4+/gWgvSZoWL4VoXe738UNPQAAAAAAAAAAABuhPMORXroSSlG8aSu+td/njrrLjzA1AACAPwAAgD8zRng9XKNNujvc2zrAyVE1nwYOORaeAboAAIA/AACAP5MkK76esvk90VAJPoKrZ74LqJk9JciXvQAAAAAAAAAAzUiPvBSS7brbI528/CyDPPnzFLwCRWQ9AACAPwAAgD86Rho+qzKBP/vY5TwXNYe+DmgXPgw3Lr0AAAAAAAAAALNUx73D4Uq6OAXfOvfrzzXCJdy6krkDugAAgD8AAAAAM5JOvYVD47neTjO779p2NAKnRzt9+lU6AACAPwAAgD/Ne968SPujuvjjrDo80wU2CVUWug7NxrkAAIA/AACAPzp9HT4KwRm7Ct4Iu4MOgzijXRK8MPgLOQAAgD8AAIA/M5IhvdKP4rtrsve8T0C4PCC9R70sRJo9AACAPwAAgD+aJyW8LGuXPudyoTzMC2u+pK1bPboNfb0AAAAAAAAAADPf9zyDFrI/r7c/P9nUg75DpMO8MRaDvQAAAAAAAAAA+ngZvjUXNT4AAzY+4WlGvhySBrz6sfE8AAAAAAAAAACAylA+twt+P5JB0D3WfYK+d4wvPoEHDDsAAAAAAAAAAIAJHT2eqnY/eizTvHdEg77wVQG9PdoFvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGfxlI/Z/TeMAWyUTegDjAF0lEdAlfHcVtXPq3V9lChoBkdAZOOdq+JxemgHTegDaAhHQJX59WtEG7l1fZQoaAZHQGVcjcVQAMloB03oA2gIR0CV+7yCFsYVdX2UKGgGR0Bl6JESdvsJaAdN6ANoCEdAlf/8A7xNI3V9lChoBkdAYirdgOSW7mgHTegDaAhHQJYFEAJb+tN1fZQoaAZHQGQAhCtzS1FoB03oA2gIR0CWBdjghr31dX2UKGgGR0BmkytA9mpVaAdN6ANoCEdAlgkVF2FFlXV9lChoBkdAQ567EpAlfWgHS8hoCEdAlgq8HWz4UXV9lChoBkdAZl79Cu2ZzGgHTegDaAhHQJYMbwgDA8B1fZQoaAZHQGBl1t4zJp5oB03oA2gIR0CWIiXCCSRsdX2UKGgGR0Bj6GUQkHD8aAdN6ANoCEdAliMKDoQnQnV9lChoBkdAXtWdiDujRGgHTegDaAhHQJYjIpd8iOh1fZQoaAZHQGCUzJ6po9NoB03oA2gIR0CWJHgmqo60dX2UKGgGR0BiG6vV3EAHaAdN6ANoCEdAliYM98qnWXV9lChoBkdAYXpLqUu+RGgHTegDaAhHQJYrapfhMrV1fZQoaAZHQEEQOHWSU1RoB00GAWgIR0CWLmtQKrq/dX2UKGgGR0BllVBF/hESaAdN6ANoCEdAljoMq8UVSHV9lChoBkdAYSAyCWeHz2gHTegDaAhHQJY9E5+6RQt1fZQoaAZHQGGrugg5imVoB03oA2gIR0CWPUVpsXSCdX2UKGgGR0Bjx4duHerNaAdN6ANoCEdAlkftEsrd33V9lChoBkdAYurwZOzpo2gHTegDaAhHQJZJxw++ueV1fZQoaAZHQGIqEU0vXbxoB03oA2gIR0CWVFndO6/ZdX2UKGgGR0BIZjpC8e0YaAdL02gIR0CWVUrNGEwndX2UKGgGR0BkU+KqGUOeaAdN6ANoCEdAllVNM0xdp3V9lChoBkdAZSmfpUxVQ2gHTegDaAhHQJZY+W2PT5R1fZQoaAZHQF9jV3EAHVxoB03oA2gIR0CWWtFMqSX/dX2UKGgGR0BkaU1Muez2aAdN6ANoCEdAllxkYGdI5HV9lChoBkdAZZb30wrUb2gHTegDaAhHQJZy3/3nIQx1fZQoaAZHQGQixN7BwddoB03oA2gIR0CWcwdeIEbHdX2UKGgGR0BdIx2St/4JaAdN6ANoCEdAlnUO7UXpGHV9lChoBkdAYOyHVPN3XGgHTegDaAhHQJZ2ykBS1md1fZQoaAZHQGSVZhz/6wdoB03oA2gIR0CWfKRLK3d9dX2UKGgGR0BiQai0v4/NaAdN6ANoCEdAln+pDZ13dXV9lChoBkdAZLJi2lVLjGgHTegDaAhHQJaKLXnQpnZ1fZQoaAZHQGNieYD1XeZoB03oA2gIR0CWjI0hNdqtdX2UKGgGR0BkXv+6y0KJaAdN6ANoCEdAloytAX2ugnV9lChoBkdAXheLQ5WBBmgHTegDaAhHQJaVv5rP+n91fZQoaAZHQGYiQAuIyj5oB03oA2gIR0CWoAe7tiQUdX2UKGgGR0BdeyOinHeaaAdN6ANoCEdAlqEeUdJaq3V9lChoBkdAW6sKUmlZYGgHTegDaAhHQJahIz+FUQ11fZQoaAZHQGFbgdwNsnBoB03oA2gIR0CWpYiO/+KkdX2UKGgGR0Bj0JKYiPhiaAdN6ANoCEdAlqcaLKmsNnV9lChoBkdAY1rMuez2OGgHTegDaAhHQJaoj3225QR1fZQoaAZHQGFhWcriEQJoB03oA2gIR0CWq3zzErGzdX2UKGgGR0BkEPLTx5LRaAdN6ANoCEdAlquWvbGm13V9lChoBkdAXwk6tDD0lWgHTegDaAhHQJa+h41P3zt1fZQoaAZHQGKC/ra/RE5oB03oA2gIR0CWwBizcAR1dX2UKGgGR0BmEKfSQYDUaAdN6ANoCEdAlsXGRaHKwXV9lChoBkdAYhlBKtga32gHTegDaAhHQJbI6lnAZbZ1fZQoaAZHQGSdsPJ7sv9oB03oA2gIR0CW1uj/dZaFdX2UKGgGR0BjFZ2hZha1aAdN6ANoCEdAltmoCIUJwHV9lChoBkdAY0E6aLGaQWgHTegDaAhHQJbZzS3LFGZ1fZQoaAZHQBFeAiFCb+doB00PAWgIR0CW3Llme18cdX2UKGgGR0Bjx0BbOeJ6aAdN6ANoCEdAluQREfDDTHV9lChoBkdARIkxM36yjmgHS/JoCEdAluiTLr5ZbXV9lChoBkdAZKGadc0Lt2gHTegDaAhHQJbuvwpe/pN1fZQoaAZHQGLvTO5avA5oB03oA2gIR0CW77JuVHFxdX2UKGgGR0BgMQbhm5DraAdN6ANoCEdAlu+1+EytWHV9lChoBkdAYGRsCT2WZGgHTegDaAhHQJbzLvrnkkt1fZQoaAZHQGQmC8vmHQBoB03oA2gIR0CW9OifQKKHdX2UKGgGR0BkB/s/pt78aAdN6ANoCEdAlvZp6yB063V9lChoBkdAZF/LM9r432gHTegDaAhHQJb5ZE3Kji51fZQoaAZHQGGVF+uvECNoB03oA2gIR0CW+XyO7xusdX2UKGgGR0BcjQsf7rLRaAdN6ANoCEdAlvrSGahHsnV9lChoBkdAZI5/Pw/gSGgHTegDaAhHQJcP6bvw3Hd1fZQoaAZHQGHcNfPX05FoB03oA2gIR0CXFWVinYQKdX2UKGgGR0BlV+W4Vh1DaAdN6ANoCEdAlySU4WDYiHV9lChoBkdAYyr6hQFcIWgHTegDaAhHQJcnm6iCaql1fZQoaAZHQGSHGKZUkv9oB03oA2gIR0CXKx//NqxkdX2UKGgGR0BZXitNi6QOaAdN6ANoCEdAlzVqr/82rHV9lChoBkdAZSGDq4YrKGgHTegDaAhHQJc6i7SRbKR1fZQoaAZHQGQErv1DjR5oB03oA2gIR0CXQNbSJCSidX2UKGgGR0BmM8EidJ8OaAdN6ANoCEdAl0HTzErGznV9lChoBkdAZ2O1XvH932gHTegDaAhHQJdB1tTDO1R1fZQoaAZHQFwLC7sfJV9oB03oA2gIR0CXRaJCBwuNdX2UKGgGR0BlcZKaoddWaAdN6ANoCEdAl0eAy6+WW3V9lChoBkdAX0TmyPdVN2gHTegDaAhHQJdJPvkRzzV1fZQoaAZHQGcOb6Hj6vdoB03oA2gIR0CXTLCK77KrdX2UKGgGR0BfHXE/B3zMaAdN6ANoCEdAl0zMW0qpcXV9lChoBkdAYliZzgdfcGgHTegDaAhHQJdOUNb1RLt1fZQoaAZHQHBBK37UG3ZoB01jAmgIR0CXToIRywOfdX2UKGgGR0Bm1qnvUjLTaAdN6ANoCEdAl0/9GNJe3XV9lChoBkfAMZibc45tFmgHTSIBaAhHQJdj8PrfLs91fZQoaAZHP/pGOdXko4NoB0uYaAhHQJdnYfdRBNV1fZQoaAZHQGHcI2XLNfRoB03oA2gIR0CXaNlTWGypdX2UKGgGR0BBtq+rU9ZBaAdNBAFoCEdAl3AENayKN3V9lChoBkdAZQf61LJ0XGgHTegDaAhHQJd4arGR3eN1fZQoaAZHQGOal7laKUFoB03oA2gIR0CXe2aOPvKEdX2UKGgGR0BnPehmGucMaAdN6ANoCEdAl4MYOhCdBnV9lChoBkdAYGZXQtz0YmgHTegDaAhHQJeHvux8lX11fZQoaAZHQGErcYyfthNoB03oA2gIR0CXjsbgjyFxdX2UKGgGR0BnsbGYKIBSaAdN6ANoCEdAl47L9VFQVXV9lChoBkdAXo7mHP/rB2gHTegDaAhHQJeTtzNliBp1fZQoaAZHQEYPi83++/RoB0vGaAhHQJeWDCAMDwJ1fZQoaAZHQGIdgh0Qsf9oB03oA2gIR0CXlmUTtb9qdX2UKGgGR0Bj3FBD5TIeaAdN6ANoCEdAl5gnBciW3XV9lChoBkdAYpoLsrupj2gHTegDaAhHQJebd1KXfIl1fZQoaAZHQGN018LKFIxoB03oA2gIR0CXnSTn7pFDdX2UKGgGR0BjWCwnpjc3aAdN6ANoCEdAl51ToZAIIHV9lChoBkdAYJPNsWO6umgHTegDaAhHQJef0iHIp6R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}