FarhanZaidi commited on
Commit
0bd87d6
1 Parent(s): 4cc1fc7

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 252.12 +/- 18.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79e437251360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e4372513f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e437251480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e437251510>", "_build": "<function ActorCriticPolicy._build at 0x79e4372515a0>", "forward": "<function ActorCriticPolicy.forward at 0x79e437251630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79e4372516c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e437251750>", "_predict": "<function ActorCriticPolicy._predict at 0x79e4372517e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e437251870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e437251900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79e437251990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79e4371e6900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711932094190020900, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADoeCT74lJ4+/gWgvSZoWL4VoXe738UNPQAAAAAAAAAAABuhPMORXroSSlG8aSu+td/njrrLjzA1AACAPwAAgD8zRng9XKNNujvc2zrAyVE1nwYOORaeAboAAIA/AACAP5MkK76esvk90VAJPoKrZ74LqJk9JciXvQAAAAAAAAAAzUiPvBSS7brbI528/CyDPPnzFLwCRWQ9AACAPwAAgD86Rho+qzKBP/vY5TwXNYe+DmgXPgw3Lr0AAAAAAAAAALNUx73D4Uq6OAXfOvfrzzXCJdy6krkDugAAgD8AAAAAM5JOvYVD47neTjO779p2NAKnRzt9+lU6AACAPwAAgD/Ne968SPujuvjjrDo80wU2CVUWug7NxrkAAIA/AACAPzp9HT4KwRm7Ct4Iu4MOgzijXRK8MPgLOQAAgD8AAIA/M5IhvdKP4rtrsve8T0C4PCC9R70sRJo9AACAPwAAgD+aJyW8LGuXPudyoTzMC2u+pK1bPboNfb0AAAAAAAAAADPf9zyDFrI/r7c/P9nUg75DpMO8MRaDvQAAAAAAAAAA+ngZvjUXNT4AAzY+4WlGvhySBrz6sfE8AAAAAAAAAACAylA+twt+P5JB0D3WfYK+d4wvPoEHDDsAAAAAAAAAAIAJHT2eqnY/eizTvHdEg77wVQG9PdoFvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGfxlI/Z/TeMAWyUTegDjAF0lEdAlfHcVtXPq3V9lChoBkdAZOOdq+JxemgHTegDaAhHQJX59WtEG7l1fZQoaAZHQGVcjcVQAMloB03oA2gIR0CV+7yCFsYVdX2UKGgGR0Bl6JESdvsJaAdN6ANoCEdAlf/8A7xNI3V9lChoBkdAYirdgOSW7mgHTegDaAhHQJYFEAJb+tN1fZQoaAZHQGQAhCtzS1FoB03oA2gIR0CWBdjghr31dX2UKGgGR0BmkytA9mpVaAdN6ANoCEdAlgkVF2FFlXV9lChoBkdAQ567EpAlfWgHS8hoCEdAlgq8HWz4UXV9lChoBkdAZl79Cu2ZzGgHTegDaAhHQJYMbwgDA8B1fZQoaAZHQGBl1t4zJp5oB03oA2gIR0CWIiXCCSRsdX2UKGgGR0Bj6GUQkHD8aAdN6ANoCEdAliMKDoQnQnV9lChoBkdAXtWdiDujRGgHTegDaAhHQJYjIpd8iOh1fZQoaAZHQGCUzJ6po9NoB03oA2gIR0CWJHgmqo60dX2UKGgGR0BiG6vV3EAHaAdN6ANoCEdAliYM98qnWXV9lChoBkdAYXpLqUu+RGgHTegDaAhHQJYrapfhMrV1fZQoaAZHQEEQOHWSU1RoB00GAWgIR0CWLmtQKrq/dX2UKGgGR0BllVBF/hESaAdN6ANoCEdAljoMq8UVSHV9lChoBkdAYSAyCWeHz2gHTegDaAhHQJY9E5+6RQt1fZQoaAZHQGGrugg5imVoB03oA2gIR0CWPUVpsXSCdX2UKGgGR0Bjx4duHerNaAdN6ANoCEdAlkftEsrd33V9lChoBkdAYurwZOzpo2gHTegDaAhHQJZJxw++ueV1fZQoaAZHQGIqEU0vXbxoB03oA2gIR0CWVFndO6/ZdX2UKGgGR0BIZjpC8e0YaAdL02gIR0CWVUrNGEwndX2UKGgGR0BkU+KqGUOeaAdN6ANoCEdAllVNM0xdp3V9lChoBkdAZSmfpUxVQ2gHTegDaAhHQJZY+W2PT5R1fZQoaAZHQF9jV3EAHVxoB03oA2gIR0CWWtFMqSX/dX2UKGgGR0BkaU1Muez2aAdN6ANoCEdAllxkYGdI5HV9lChoBkdAZZb30wrUb2gHTegDaAhHQJZy3/3nIQx1fZQoaAZHQGQixN7BwddoB03oA2gIR0CWcwdeIEbHdX2UKGgGR0BdIx2St/4JaAdN6ANoCEdAlnUO7UXpGHV9lChoBkdAYOyHVPN3XGgHTegDaAhHQJZ2ykBS1md1fZQoaAZHQGSVZhz/6wdoB03oA2gIR0CWfKRLK3d9dX2UKGgGR0BiQai0v4/NaAdN6ANoCEdAln+pDZ13dXV9lChoBkdAZLJi2lVLjGgHTegDaAhHQJaKLXnQpnZ1fZQoaAZHQGNieYD1XeZoB03oA2gIR0CWjI0hNdqtdX2UKGgGR0BkXv+6y0KJaAdN6ANoCEdAloytAX2ugnV9lChoBkdAXheLQ5WBBmgHTegDaAhHQJaVv5rP+n91fZQoaAZHQGYiQAuIyj5oB03oA2gIR0CWoAe7tiQUdX2UKGgGR0BdeyOinHeaaAdN6ANoCEdAlqEeUdJaq3V9lChoBkdAW6sKUmlZYGgHTegDaAhHQJahIz+FUQ11fZQoaAZHQGFbgdwNsnBoB03oA2gIR0CWpYiO/+KkdX2UKGgGR0Bj0JKYiPhiaAdN6ANoCEdAlqcaLKmsNnV9lChoBkdAY1rMuez2OGgHTegDaAhHQJaoj3225QR1fZQoaAZHQGFhWcriEQJoB03oA2gIR0CWq3zzErGzdX2UKGgGR0BkEPLTx5LRaAdN6ANoCEdAlquWvbGm13V9lChoBkdAXwk6tDD0lWgHTegDaAhHQJa+h41P3zt1fZQoaAZHQGKC/ra/RE5oB03oA2gIR0CWwBizcAR1dX2UKGgGR0BmEKfSQYDUaAdN6ANoCEdAlsXGRaHKwXV9lChoBkdAYhlBKtga32gHTegDaAhHQJbI6lnAZbZ1fZQoaAZHQGSdsPJ7sv9oB03oA2gIR0CW1uj/dZaFdX2UKGgGR0BjFZ2hZha1aAdN6ANoCEdAltmoCIUJwHV9lChoBkdAY0E6aLGaQWgHTegDaAhHQJbZzS3LFGZ1fZQoaAZHQBFeAiFCb+doB00PAWgIR0CW3Llme18cdX2UKGgGR0Bjx0BbOeJ6aAdN6ANoCEdAluQREfDDTHV9lChoBkdARIkxM36yjmgHS/JoCEdAluiTLr5ZbXV9lChoBkdAZKGadc0Lt2gHTegDaAhHQJbuvwpe/pN1fZQoaAZHQGLvTO5avA5oB03oA2gIR0CW77JuVHFxdX2UKGgGR0BgMQbhm5DraAdN6ANoCEdAlu+1+EytWHV9lChoBkdAYGRsCT2WZGgHTegDaAhHQJbzLvrnkkt1fZQoaAZHQGQmC8vmHQBoB03oA2gIR0CW9OifQKKHdX2UKGgGR0BkB/s/pt78aAdN6ANoCEdAlvZp6yB063V9lChoBkdAZF/LM9r432gHTegDaAhHQJb5ZE3Kji51fZQoaAZHQGGVF+uvECNoB03oA2gIR0CW+XyO7xusdX2UKGgGR0BcjQsf7rLRaAdN6ANoCEdAlvrSGahHsnV9lChoBkdAZI5/Pw/gSGgHTegDaAhHQJcP6bvw3Hd1fZQoaAZHQGHcNfPX05FoB03oA2gIR0CXFWVinYQKdX2UKGgGR0BlV+W4Vh1DaAdN6ANoCEdAlySU4WDYiHV9lChoBkdAYyr6hQFcIWgHTegDaAhHQJcnm6iCaql1fZQoaAZHQGSHGKZUkv9oB03oA2gIR0CXKx//NqxkdX2UKGgGR0BZXitNi6QOaAdN6ANoCEdAlzVqr/82rHV9lChoBkdAZSGDq4YrKGgHTegDaAhHQJc6i7SRbKR1fZQoaAZHQGQErv1DjR5oB03oA2gIR0CXQNbSJCSidX2UKGgGR0BmM8EidJ8OaAdN6ANoCEdAl0HTzErGznV9lChoBkdAZ2O1XvH932gHTegDaAhHQJdB1tTDO1R1fZQoaAZHQFwLC7sfJV9oB03oA2gIR0CXRaJCBwuNdX2UKGgGR0BlcZKaoddWaAdN6ANoCEdAl0eAy6+WW3V9lChoBkdAX0TmyPdVN2gHTegDaAhHQJdJPvkRzzV1fZQoaAZHQGcOb6Hj6vdoB03oA2gIR0CXTLCK77KrdX2UKGgGR0BfHXE/B3zMaAdN6ANoCEdAl0zMW0qpcXV9lChoBkdAYliZzgdfcGgHTegDaAhHQJdOUNb1RLt1fZQoaAZHQHBBK37UG3ZoB01jAmgIR0CXToIRywOfdX2UKGgGR0Bm1qnvUjLTaAdN6ANoCEdAl0/9GNJe3XV9lChoBkfAMZibc45tFmgHTSIBaAhHQJdj8PrfLs91fZQoaAZHP/pGOdXko4NoB0uYaAhHQJdnYfdRBNV1fZQoaAZHQGHcI2XLNfRoB03oA2gIR0CXaNlTWGypdX2UKGgGR0BBtq+rU9ZBaAdNBAFoCEdAl3AENayKN3V9lChoBkdAZQf61LJ0XGgHTegDaAhHQJd4arGR3eN1fZQoaAZHQGOal7laKUFoB03oA2gIR0CXe2aOPvKEdX2UKGgGR0BnPehmGucMaAdN6ANoCEdAl4MYOhCdBnV9lChoBkdAYGZXQtz0YmgHTegDaAhHQJeHvux8lX11fZQoaAZHQGErcYyfthNoB03oA2gIR0CXjsbgjyFxdX2UKGgGR0BnsbGYKIBSaAdN6ANoCEdAl47L9VFQVXV9lChoBkdAXo7mHP/rB2gHTegDaAhHQJeTtzNliBp1fZQoaAZHQEYPi83++/RoB0vGaAhHQJeWDCAMDwJ1fZQoaAZHQGIdgh0Qsf9oB03oA2gIR0CXlmUTtb9qdX2UKGgGR0Bj3FBD5TIeaAdN6ANoCEdAl5gnBciW3XV9lChoBkdAYpoLsrupj2gHTegDaAhHQJebd1KXfIl1fZQoaAZHQGN018LKFIxoB03oA2gIR0CXnSTn7pFDdX2UKGgGR0BjWCwnpjc3aAdN6ANoCEdAl51ToZAIIHV9lChoBkdAYJPNsWO6umgHTegDaAhHQJef0iHIp6R1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f90b41f27a538a32fd271c90c4d911a2284203ca497f85eabdfbed5ac0c55c5d
3
+ size 148080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79e437251360>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e4372513f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e437251480>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e437251510>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79e4372515a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79e437251630>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79e4372516c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e437251750>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79e4372517e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e437251870>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e437251900>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79e437251990>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79e4371e6900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1711932094190020900,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADoeCT74lJ4+/gWgvSZoWL4VoXe738UNPQAAAAAAAAAAABuhPMORXroSSlG8aSu+td/njrrLjzA1AACAPwAAgD8zRng9XKNNujvc2zrAyVE1nwYOORaeAboAAIA/AACAP5MkK76esvk90VAJPoKrZ74LqJk9JciXvQAAAAAAAAAAzUiPvBSS7brbI528/CyDPPnzFLwCRWQ9AACAPwAAgD86Rho+qzKBP/vY5TwXNYe+DmgXPgw3Lr0AAAAAAAAAALNUx73D4Uq6OAXfOvfrzzXCJdy6krkDugAAgD8AAAAAM5JOvYVD47neTjO779p2NAKnRzt9+lU6AACAPwAAgD/Ne968SPujuvjjrDo80wU2CVUWug7NxrkAAIA/AACAPzp9HT4KwRm7Ct4Iu4MOgzijXRK8MPgLOQAAgD8AAIA/M5IhvdKP4rtrsve8T0C4PCC9R70sRJo9AACAPwAAgD+aJyW8LGuXPudyoTzMC2u+pK1bPboNfb0AAAAAAAAAADPf9zyDFrI/r7c/P9nUg75DpMO8MRaDvQAAAAAAAAAA+ngZvjUXNT4AAzY+4WlGvhySBrz6sfE8AAAAAAAAAACAylA+twt+P5JB0D3WfYK+d4wvPoEHDDsAAAAAAAAAAIAJHT2eqnY/eizTvHdEg77wVQG9PdoFvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGfxlI/Z/TeMAWyUTegDjAF0lEdAlfHcVtXPq3V9lChoBkdAZOOdq+JxemgHTegDaAhHQJX59WtEG7l1fZQoaAZHQGVcjcVQAMloB03oA2gIR0CV+7yCFsYVdX2UKGgGR0Bl6JESdvsJaAdN6ANoCEdAlf/8A7xNI3V9lChoBkdAYirdgOSW7mgHTegDaAhHQJYFEAJb+tN1fZQoaAZHQGQAhCtzS1FoB03oA2gIR0CWBdjghr31dX2UKGgGR0BmkytA9mpVaAdN6ANoCEdAlgkVF2FFlXV9lChoBkdAQ567EpAlfWgHS8hoCEdAlgq8HWz4UXV9lChoBkdAZl79Cu2ZzGgHTegDaAhHQJYMbwgDA8B1fZQoaAZHQGBl1t4zJp5oB03oA2gIR0CWIiXCCSRsdX2UKGgGR0Bj6GUQkHD8aAdN6ANoCEdAliMKDoQnQnV9lChoBkdAXtWdiDujRGgHTegDaAhHQJYjIpd8iOh1fZQoaAZHQGCUzJ6po9NoB03oA2gIR0CWJHgmqo60dX2UKGgGR0BiG6vV3EAHaAdN6ANoCEdAliYM98qnWXV9lChoBkdAYXpLqUu+RGgHTegDaAhHQJYrapfhMrV1fZQoaAZHQEEQOHWSU1RoB00GAWgIR0CWLmtQKrq/dX2UKGgGR0BllVBF/hESaAdN6ANoCEdAljoMq8UVSHV9lChoBkdAYSAyCWeHz2gHTegDaAhHQJY9E5+6RQt1fZQoaAZHQGGrugg5imVoB03oA2gIR0CWPUVpsXSCdX2UKGgGR0Bjx4duHerNaAdN6ANoCEdAlkftEsrd33V9lChoBkdAYurwZOzpo2gHTegDaAhHQJZJxw++ueV1fZQoaAZHQGIqEU0vXbxoB03oA2gIR0CWVFndO6/ZdX2UKGgGR0BIZjpC8e0YaAdL02gIR0CWVUrNGEwndX2UKGgGR0BkU+KqGUOeaAdN6ANoCEdAllVNM0xdp3V9lChoBkdAZSmfpUxVQ2gHTegDaAhHQJZY+W2PT5R1fZQoaAZHQF9jV3EAHVxoB03oA2gIR0CWWtFMqSX/dX2UKGgGR0BkaU1Muez2aAdN6ANoCEdAllxkYGdI5HV9lChoBkdAZZb30wrUb2gHTegDaAhHQJZy3/3nIQx1fZQoaAZHQGQixN7BwddoB03oA2gIR0CWcwdeIEbHdX2UKGgGR0BdIx2St/4JaAdN6ANoCEdAlnUO7UXpGHV9lChoBkdAYOyHVPN3XGgHTegDaAhHQJZ2ykBS1md1fZQoaAZHQGSVZhz/6wdoB03oA2gIR0CWfKRLK3d9dX2UKGgGR0BiQai0v4/NaAdN6ANoCEdAln+pDZ13dXV9lChoBkdAZLJi2lVLjGgHTegDaAhHQJaKLXnQpnZ1fZQoaAZHQGNieYD1XeZoB03oA2gIR0CWjI0hNdqtdX2UKGgGR0BkXv+6y0KJaAdN6ANoCEdAloytAX2ugnV9lChoBkdAXheLQ5WBBmgHTegDaAhHQJaVv5rP+n91fZQoaAZHQGYiQAuIyj5oB03oA2gIR0CWoAe7tiQUdX2UKGgGR0BdeyOinHeaaAdN6ANoCEdAlqEeUdJaq3V9lChoBkdAW6sKUmlZYGgHTegDaAhHQJahIz+FUQ11fZQoaAZHQGFbgdwNsnBoB03oA2gIR0CWpYiO/+KkdX2UKGgGR0Bj0JKYiPhiaAdN6ANoCEdAlqcaLKmsNnV9lChoBkdAY1rMuez2OGgHTegDaAhHQJaoj3225QR1fZQoaAZHQGFhWcriEQJoB03oA2gIR0CWq3zzErGzdX2UKGgGR0BkEPLTx5LRaAdN6ANoCEdAlquWvbGm13V9lChoBkdAXwk6tDD0lWgHTegDaAhHQJa+h41P3zt1fZQoaAZHQGKC/ra/RE5oB03oA2gIR0CWwBizcAR1dX2UKGgGR0BmEKfSQYDUaAdN6ANoCEdAlsXGRaHKwXV9lChoBkdAYhlBKtga32gHTegDaAhHQJbI6lnAZbZ1fZQoaAZHQGSdsPJ7sv9oB03oA2gIR0CW1uj/dZaFdX2UKGgGR0BjFZ2hZha1aAdN6ANoCEdAltmoCIUJwHV9lChoBkdAY0E6aLGaQWgHTegDaAhHQJbZzS3LFGZ1fZQoaAZHQBFeAiFCb+doB00PAWgIR0CW3Llme18cdX2UKGgGR0Bjx0BbOeJ6aAdN6ANoCEdAluQREfDDTHV9lChoBkdARIkxM36yjmgHS/JoCEdAluiTLr5ZbXV9lChoBkdAZKGadc0Lt2gHTegDaAhHQJbuvwpe/pN1fZQoaAZHQGLvTO5avA5oB03oA2gIR0CW77JuVHFxdX2UKGgGR0BgMQbhm5DraAdN6ANoCEdAlu+1+EytWHV9lChoBkdAYGRsCT2WZGgHTegDaAhHQJbzLvrnkkt1fZQoaAZHQGQmC8vmHQBoB03oA2gIR0CW9OifQKKHdX2UKGgGR0BkB/s/pt78aAdN6ANoCEdAlvZp6yB063V9lChoBkdAZF/LM9r432gHTegDaAhHQJb5ZE3Kji51fZQoaAZHQGGVF+uvECNoB03oA2gIR0CW+XyO7xusdX2UKGgGR0BcjQsf7rLRaAdN6ANoCEdAlvrSGahHsnV9lChoBkdAZI5/Pw/gSGgHTegDaAhHQJcP6bvw3Hd1fZQoaAZHQGHcNfPX05FoB03oA2gIR0CXFWVinYQKdX2UKGgGR0BlV+W4Vh1DaAdN6ANoCEdAlySU4WDYiHV9lChoBkdAYyr6hQFcIWgHTegDaAhHQJcnm6iCaql1fZQoaAZHQGSHGKZUkv9oB03oA2gIR0CXKx//NqxkdX2UKGgGR0BZXitNi6QOaAdN6ANoCEdAlzVqr/82rHV9lChoBkdAZSGDq4YrKGgHTegDaAhHQJc6i7SRbKR1fZQoaAZHQGQErv1DjR5oB03oA2gIR0CXQNbSJCSidX2UKGgGR0BmM8EidJ8OaAdN6ANoCEdAl0HTzErGznV9lChoBkdAZ2O1XvH932gHTegDaAhHQJdB1tTDO1R1fZQoaAZHQFwLC7sfJV9oB03oA2gIR0CXRaJCBwuNdX2UKGgGR0BlcZKaoddWaAdN6ANoCEdAl0eAy6+WW3V9lChoBkdAX0TmyPdVN2gHTegDaAhHQJdJPvkRzzV1fZQoaAZHQGcOb6Hj6vdoB03oA2gIR0CXTLCK77KrdX2UKGgGR0BfHXE/B3zMaAdN6ANoCEdAl0zMW0qpcXV9lChoBkdAYliZzgdfcGgHTegDaAhHQJdOUNb1RLt1fZQoaAZHQHBBK37UG3ZoB01jAmgIR0CXToIRywOfdX2UKGgGR0Bm1qnvUjLTaAdN6ANoCEdAl0/9GNJe3XV9lChoBkfAMZibc45tFmgHTSIBaAhHQJdj8PrfLs91fZQoaAZHP/pGOdXko4NoB0uYaAhHQJdnYfdRBNV1fZQoaAZHQGHcI2XLNfRoB03oA2gIR0CXaNlTWGypdX2UKGgGR0BBtq+rU9ZBaAdNBAFoCEdAl3AENayKN3V9lChoBkdAZQf61LJ0XGgHTegDaAhHQJd4arGR3eN1fZQoaAZHQGOal7laKUFoB03oA2gIR0CXe2aOPvKEdX2UKGgGR0BnPehmGucMaAdN6ANoCEdAl4MYOhCdBnV9lChoBkdAYGZXQtz0YmgHTegDaAhHQJeHvux8lX11fZQoaAZHQGErcYyfthNoB03oA2gIR0CXjsbgjyFxdX2UKGgGR0BnsbGYKIBSaAdN6ANoCEdAl47L9VFQVXV9lChoBkdAXo7mHP/rB2gHTegDaAhHQJeTtzNliBp1fZQoaAZHQEYPi83++/RoB0vGaAhHQJeWDCAMDwJ1fZQoaAZHQGIdgh0Qsf9oB03oA2gIR0CXlmUTtb9qdX2UKGgGR0Bj3FBD5TIeaAdN6ANoCEdAl5gnBciW3XV9lChoBkdAYpoLsrupj2gHTegDaAhHQJebd1KXfIl1fZQoaAZHQGN018LKFIxoB03oA2gIR0CXnSTn7pFDdX2UKGgGR0BjWCwnpjc3aAdN6ANoCEdAl51ToZAIIHV9lChoBkdAYJPNsWO6umgHTegDaAhHQJef0iHIp6R1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4b93f8cff7357347aafc02cbd8adaeba7be4124e68145f179c02306d05eb6bf
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03ea814957e2f001ab3a5f2784cadd02287053fb1d27ef4538a7d07a62726628
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (159 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.12195849999998, "std_reward": 18.109777105993274, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-01T01:15:52.689251"}