Edit model card

cardiffnlp-twitter-xlmr-finetuned-txtnly-all-42

This model is a fine-tuned version of cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual on the all dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6972
  • Precision: 0.6687
  • Recall: 0.6729
  • F1: 0.6703

Model description

More information needed

Usage

To use the model use the following script. Kindly set the device based on availability of the GPU.

from transformers import (pipeline)

analyzer = pipeline(
    "sentiment-analysis", model="FFZG-cleopatra/M2SA-text-only"
)

input_text = "I feel amazing today."
print(analyzer(input_text)[0]["label"])

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.6122 0.06 500 0.8542 0.6559 0.4905 0.4841
0.5497 0.12 1000 0.8037 0.7044 0.6070 0.6209
0.5404 0.18 1500 0.9700 0.5591 0.4176 0.3652
0.5165 0.24 2000 0.7449 0.7349 0.5297 0.5369
0.5136 0.3 2500 0.7885 0.6766 0.5025 0.5001
0.5072 0.36 3000 0.8124 0.6076 0.6132 0.5917
0.5011 0.42 3500 0.8767 0.6427 0.5987 0.5784
0.5021 0.48 4000 0.7958 0.6848 0.6362 0.6503
0.4946 0.54 4500 0.8045 0.7220 0.4968 0.4983
0.4928 0.6 5000 0.7803 0.7582 0.5381 0.5503
0.5008 0.66 5500 0.7507 0.4407 0.4798 0.4594
0.4966 0.72 6000 0.8239 0.6140 0.6767 0.6311
0.4791 0.78 6500 0.7028 0.6568 0.5206 0.5413
0.494 0.84 7000 0.8034 0.6660 0.5189 0.5227
0.4861 0.9 7500 0.9003 0.5781 0.4785 0.4541
0.4804 0.96 8000 0.7740 0.6239 0.5775 0.5792
0.4614 1.02 8500 0.7397 0.6848 0.6312 0.6471
0.4315 1.08 9000 0.7889 0.6642 0.6035 0.6149
0.4506 1.14 9500 0.8784 0.6387 0.5017 0.4968
0.4489 1.2 10000 0.7994 0.5340 0.4964 0.4949
0.4466 1.26 10500 0.8110 0.5776 0.4735 0.4464
0.4319 1.32 11000 0.8069 0.6612 0.5399 0.5481
0.4243 1.38 11500 0.7942 0.5948 0.5705 0.5797
0.4398 1.44 12000 0.9738 0.5370 0.6070 0.5247
0.4526 1.5 12500 0.7196 0.7046 0.5478 0.5590
0.4529 1.56 13000 0.8050 0.6419 0.5731 0.5863
0.446 1.62 13500 0.7564 0.6521 0.5912 0.6107
0.4315 1.68 14000 0.7515 0.6475 0.6069 0.6212
0.4464 1.74 14500 0.8308 0.6276 0.5513 0.5599
0.4423 1.8 15000 0.7982 0.6176 0.5937 0.5992
0.4551 1.86 15500 0.8223 0.6356 0.5934 0.6020
0.4408 1.92 16000 0.7691 0.6088 0.5147 0.5131
0.4389 1.98 16500 0.6972 0.6687 0.6729 0.6703
0.3886 2.04 17000 0.7798 0.6126 0.5437 0.5543
0.3883 2.1 17500 0.8385 0.5948 0.6225 0.5978
0.4011 2.16 18000 0.7755 0.6551 0.5787 0.5915
0.3992 2.22 18500 0.7886 0.5582 0.5519 0.5472
0.393 2.28 19000 0.7660 0.5901 0.5923 0.5889
0.3891 2.34 19500 0.7702 0.5792 0.5331 0.5354
0.4119 2.41 20000 0.8545 0.5406 0.5243 0.5111
0.3981 2.47 20500 0.8641 0.5695 0.5536 0.5364
0.4 2.53 21000 0.8045 0.5988 0.5845 0.5822
0.4059 2.59 21500 0.8023 0.6301 0.5549 0.5696
0.3805 2.65 22000 0.8242 0.5633 0.5363 0.5387
0.4126 2.71 22500 0.8866 0.5630 0.5244 0.5253
0.3959 2.77 23000 0.9228 0.6486 0.5570 0.5716
0.3972 2.83 23500 0.8297 0.6415 0.6336 0.6330
0.3779 2.89 24000 0.8683 0.6023 0.5920 0.5897
0.3951 2.95 24500 0.8628 0.5892 0.5116 0.5125
0.3916 3.01 25000 0.9203 0.6305 0.5026 0.5024
0.3524 3.07 25500 0.9825 0.6089 0.5039 0.5011
0.3332 3.13 26000 0.8755 0.5980 0.5712 0.5814
0.3517 3.19 26500 0.9922 0.6701 0.5941 0.6181
0.3534 3.25 27000 0.9573 0.5653 0.5175 0.5243
0.3544 3.31 27500 0.9827 0.5739 0.5531 0.5551
0.3526 3.37 28000 0.9517 0.6019 0.4737 0.4657
0.3448 3.43 28500 0.9559 0.5744 0.5138 0.5232
0.3662 3.49 29000 0.8470 0.6417 0.6176 0.6173
0.3502 3.55 29500 0.8524 0.6606 0.5776 0.5912
0.3733 3.61 30000 0.9210 0.5578 0.5555 0.5466
0.3424 3.67 30500 0.9295 0.5863 0.6100 0.5809
0.3591 3.73 31000 0.9707 0.5828 0.4769 0.4588
0.3634 3.79 31500 0.8524 0.6136 0.5681 0.5752

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
12
Safetensors
Model size
278M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for FFZG-cleopatra/M2SA-text-only

Space using FFZG-cleopatra/M2SA-text-only 1