File size: 13,781 Bytes
29a485b
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e87099b4a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e87099b4af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e87099b4b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e87099b4c10>", "_build": "<function ActorCriticPolicy._build at 0x7e87099b4ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7e87099b4d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e87099b4dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e87099b4e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7e87099b4ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e87099b4f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e87099b5000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e87099b5090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e870994cbc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708093414054899915, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACWlTyfmuW7+7cMve8jID0UOTc6ROcEPQAAgD8AAIA/AKM+va5trLpS6Nc6WLOGNkbCH7corve5AACAPwAAgD9NcoQ9XHNEulinfbtzjU04r406u4JdejgAAIA/AACAPzM7Vz1c5126mQRIuVX44LKVW3C7S0poOAAAgD8AAIA/AMIXvYVjsbkY7dS7xksBOBoglDv6uQa3AACAPwAAgD+GU2++YWGHPvMldT7C0XG+Fm+gPR/0Cj4AAAAAAAAAABq8jj2up426fG6cOc1nkzTQdBU7cKS1uAAAgD8AAIA/ZsQrvBTsirrncQo7lqQkN+CZiDojcuq5AACAPwAAgD/AkLM9HD/QPoMvcr5y8F++Np3ovLhOj70AAAAAAAAAAGrLnr6XM2Q/RSftPeksqb5LIoW+FZSKPgAAAAAAAAAAAATHvOGwkbpWneK64tcXtnW8NDqesAE6AACAPwAAgD+zFU49UuivudzdL7qiUAC2cMlzOzDZTDkAAIA/AACAP2ZEWb3scdu5+PxLPKlfgjYRT6G7KnaHNQAAgD8AAIA/mgO5POGAhboVHGi6XrKXNVS7PDtGI4c5AACAPwAAgD9ALJ29pMAauTDnXDtJ4Zk27VCJOzoog7oAAAAAAACAPxpZnz0p1Ga6YCkfuzm++DfjH/O6M6d1NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQKybYsd1eMAWyUTegDjAF0lEdAltm6UNayKXV9lChoBkdARLD238XN1WgHS9xoCEdAlt3QYP5HmXV9lChoBkdAYJT4gzP8h2gHTegDaAhHQJbeipVCHAR1fZQoaAZHP+WlruYx+KFoB0v9aAhHQJbgYtpVS4x1fZQoaAZHQFrj0EHMUypoB03oA2gIR0CW4IRpUPxydX2UKGgGR0Bkw3dRBNVSaAdN6ANoCEdAluG8HB1s+HV9lChoBkdAYxMDBdld1WgHTegDaAhHQJblYe7tiQV1fZQoaAZHQGTgeUyHmA9oB03oA2gIR0CW52/H5rP/dX2UKGgGR0BEGlByCFsYaAdNAAFoCEdAlu7BUrCm/HV9lChoBkdAZNo71ZkkKWgHTegDaAhHQJcNXLSuyNZ1fZQoaAZHQG9bIfSx7iRoB01yAmgIR0CXDZGEf1YhdX2UKGgGR0Bh5w1k1/DtaAdN6ANoCEdAlxGFIZqEe3V9lChoBkdAY8inAIppe2gHTegDaAhHQJcXLONYKY11fZQoaAZHQGNdjv3JxNtoB03oA2gIR0CXF7Nwzch1dX2UKGgGR0BQ565Xlr/LaAdL2WgIR0CXG8Pt2LYPdX2UKGgGR0BjrvLgXMyKaAdN6ANoCEdAlyG8LORkmXV9lChoBkdATFxNM495hWgHS+RoCEdAlyIUrwvxpnV9lChoBkdAYwu9/SYw7GgHTegDaAhHQJcnisKb8WN1fZQoaAZHQGL7JDeCTU1oB03oA2gIR0CXJ+jhUBGQdX2UKGgGR0BlACQHRkVfaAdN6ANoCEdAlymtknTiKnV9lChoBkdAY6M2OyVv/GgHTegDaAhHQJcuwFINEw51fZQoaAZHQGOz4NI9TxZoB03oA2gIR0CXL5yqdYnwdX2UKGgGR0BnKZPRArxzaAdN6ANoCEdAlzH+h9LHuXV9lChoBkdAZjeTEBKcu2gHTegDaAhHQJczs1pCa7V1fZQoaAZHQFFhqPwNLDhoB0vCaAhHQJc0wpKBd2R1fZQoaAZHQGPLeglF+d9oB03oA2gIR0CXOBtP557gdX2UKGgGR0BhPMsz2vjfaAdN6ANoCEdAlzpeJk5IYnV9lChoBkdAXekv114gR2gHTegDaAhHQJdAPxSYPXl1fZQoaAZHQGdEPxx1gYxoB03oA2gIR0CXXr0Re1KHdX2UKGgGR0BiiZwl0HQhaAdN6ANoCEdAl2f10knkUHV9lChoBkdAY+5uuzQeFWgHTegDaAhHQJdoes1baAZ1fZQoaAZHQFt5mv4dp7FoB03oA2gIR0CXbH0CRwIddX2UKGgGR0Bkh2/JvHcUaAdN6ANoCEdAl3C6bWmP53V9lChoBkdAXivNKRMewWgHTegDaAhHQJdw9iqhlDp1fZQoaAZHQGPB9CNS619oB03oA2gIR0CXdeWqLjxTdX2UKGgGR0BnQU43m3fAaAdN6ANoCEdAl3ZHgUDdQHV9lChoBkdASMIIhQm/nGgHS+loCEdAl3nyLIgeR3V9lChoBkdAYo0APNFBp2gHTegDaAhHQJd98WxhUip1fZQoaAZHQGNrD/uLJjloB03oA2gIR0CXfyQrc0tRdX2UKGgGR0Bh8Cv3ai9JaAdN6ANoCEdAl4JCWJJoTXV9lChoBkdAZf1RIjGDMGgHTegDaAhHQJeEBFF2FFl1fZQoaAZHQGHJ4zSCvoxoB03oA2gIR0CXhPYLb5/LdX2UKGgGR0Biis+qzZ6EaAdN6ANoCEdAl4gKYeDFqHV9lChoBkdAZ2EeKbayr2gHTegDaAhHQJeKMtbs4T91fZQoaAZHQGH6BY3eenRoB03oA2gIR0CXkFJyhi9adX2UKGgGR0A+rCKaXrt3aAdL/WgIR0CXkFKh+OOsdX2UKGgGR0BPrJoCdSVGaAdL1mgIR0CXlnLrHEMtdX2UKGgGR0Bg/3o7muDBaAdN6ANoCEdAl5tWEK3NLXV9lChoBkdAYbgNsnAqNWgHTegDaAhHQJe3JvxYq5N1fZQoaAZHQGLN+sHSncdoB03oA2gIR0CXt5yfL9uQdX2UKGgGR0BlwrrzGxUvaAdN6ANoCEdAl7+WsNlRQHV9lChoBkdAYI6MXrMTvmgHTegDaAhHQJe/1aLXL/11fZQoaAZHQGOjKOktVaRoB03oA2gIR0CXxJf2K2rodX2UKGgGR0BlcLdnCfpVaAdN6ANoCEdAl8Twz1schnV9lChoBkdARhqnR9gF5mgHTQABaAhHQJfF9d8iOed1fZQoaAZHQGInnDiwSrZoB03oA2gIR0CXyI5xBE8adX2UKGgGR0Bj3YmXw9aEaAdN6ANoCEdAl8uK4Ds+mnV9lChoBkdAZMyLRa5f+mgHTegDaAhHQJfMRgRbr1N1fZQoaAZHQF5dhwVCXyBoB03oA2gIR0CXz7n9NvfkdX2UKGgGR0BjuHv6TGHYaAdN6ANoCEdAl9C+j2zv7XV9lChoBkdAM3RDXvphW2gHTQoBaAhHQJfSqkSElE91fZQoaAZHQGFHFbVz6rNoB03oA2gIR0CX0/F7laKUdX2UKGgGR0BjfMPOIInjaAdN6ANoCEdAl9xSMHbAUXV9lChoBkdAZCCDoyKvV2gHTegDaAhHQJfcVbRnezl1fZQoaAZHQGJy91MdtEZoB03oA2gIR0CX5EJkGzKLdX2UKGgGR0BkDZG8VYZEaAdN6ANoCEdAl+liuyNXHXV9lChoBkdAZWJseGO+7GgHTegDaAhHQJgECLjxTbZ1fZQoaAZHQGMZXKSxJNFoB03oA2gIR0CYDVoXbdrPdX2UKGgGR0BkJiKgqVhTaAdN6ANoCEdAmA2yqMm4RXV9lChoBkdAZwmVDa4+bGgHTegDaAhHQJgU8BjnV5N1fZQoaAZHQGAbHX/YJ3RoB03oA2gIR0CYFhvZh8YydX2UKGgGR0BdzVzySV4YaAdN6ANoCEdAmBkS8an753V9lChoBkdAZw2bjtG/e2gHTegDaAhHQJgcPvttygh1fZQoaAZHQGiuk6DGtIVoB03oA2gIR0CYHRVMmF8HdX2UKGgGR0BknWepXIU8aAdN6ANoCEdAmCDuNo8IRnV9lChoBkdAYlRpN9H+ZWgHTegDaAhHQJgiDdadMCd1fZQoaAZHQGMNbR4QjD9oB03oA2gIR0CYJA9eyAx0dX2UKGgGR0Bfp1hTfixWaAdN6ANoCEdAmCVLGBFuvXV9lChoBkdAZCzZZB9kSWgHTegDaAhHQJguAlXzUZx1fZQoaAZHQGYrbkGRmshoB03oA2gIR0CYLgSV4X41dX2UKGgGR0BAuIbn5i3HaAdNBAFoCEdAmDO1eSjgynV9lChoBkdAZa5s3Q2MsGgHTegDaAhHQJg05Mbm2b51fZQoaAZHQGYcNX5nDixoB03oA2gIR0CYOkOMERradX2UKGgGR0BPEYetCAtnaAdNFAFoCEdAmFMxshxHXnV9lChoBkdAYbkYoAn2I2gHTegDaAhHQJhXZ67dzn11fZQoaAZHQF6X2gFotcxoB03oA2gIR0CYX8eBQN1AdX2UKGgGR0BmCX8MuvlmaAdN6ANoCEdAmGAJm/WUbHV9lChoBkdAYfyM72criGgHTegDaAhHQJhllZRsMy91fZQoaAZHQGBgShrWRRxoB03oA2gIR0CYZrY7q6e5dX2UKGgGR0BfSl67dznzaAdN6ANoCEdAmGlie2/i53V9lChoBkdAYtIkdFOO82gHTegDaAhHQJhtNzHS4ON1fZQoaAZHQGRJ5KODJ2doB03oA2gIR0CYbm6hxo7FdX2UKGgGR0BizieAd4mkaAdN6ANoCEdAmHOZccENfHV9lChoBkdAYv0mhM8HOmgHTegDaAhHQJh0h9hJAdJ1fZQoaAZHQGAzwiRnvlVoB03oA2gIR0CYd2d6cAindX2UKGgGR0BIz4VymygPaAdNHwFoCEdAmHrqltTDO3V9lChoBkdAZqHkyULUkWgHTegDaAhHQJh/BaKUFB91fZQoaAZHQFvgmVqveP9oB03oA2gIR0CYg7yad+XrdX2UKGgGR0BmbMOCoS+QaAdN6ANoCEdAmIStz0Yj0XV9lChoBkdAZVMUJv5xi2gHTegDaAhHQJiJNCOWBz51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}