Eyuel commited on
Commit
29a485b
1 Parent(s): 148283e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.04 +/- 13.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e87099b4a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e87099b4af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e87099b4b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e87099b4c10>", "_build": "<function ActorCriticPolicy._build at 0x7e87099b4ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7e87099b4d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e87099b4dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e87099b4e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7e87099b4ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e87099b4f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e87099b5000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e87099b5090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e870994cbc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708093414054899915, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACWlTyfmuW7+7cMve8jID0UOTc6ROcEPQAAgD8AAIA/AKM+va5trLpS6Nc6WLOGNkbCH7corve5AACAPwAAgD9NcoQ9XHNEulinfbtzjU04r406u4JdejgAAIA/AACAPzM7Vz1c5126mQRIuVX44LKVW3C7S0poOAAAgD8AAIA/AMIXvYVjsbkY7dS7xksBOBoglDv6uQa3AACAPwAAgD+GU2++YWGHPvMldT7C0XG+Fm+gPR/0Cj4AAAAAAAAAABq8jj2up426fG6cOc1nkzTQdBU7cKS1uAAAgD8AAIA/ZsQrvBTsirrncQo7lqQkN+CZiDojcuq5AACAPwAAgD/AkLM9HD/QPoMvcr5y8F++Np3ovLhOj70AAAAAAAAAAGrLnr6XM2Q/RSftPeksqb5LIoW+FZSKPgAAAAAAAAAAAATHvOGwkbpWneK64tcXtnW8NDqesAE6AACAPwAAgD+zFU49UuivudzdL7qiUAC2cMlzOzDZTDkAAIA/AACAP2ZEWb3scdu5+PxLPKlfgjYRT6G7KnaHNQAAgD8AAIA/mgO5POGAhboVHGi6XrKXNVS7PDtGI4c5AACAPwAAgD9ALJ29pMAauTDnXDtJ4Zk27VCJOzoog7oAAAAAAACAPxpZnz0p1Ga6YCkfuzm++DfjH/O6M6d1NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQKybYsd1eMAWyUTegDjAF0lEdAltm6UNayKXV9lChoBkdARLD238XN1WgHS9xoCEdAlt3QYP5HmXV9lChoBkdAYJT4gzP8h2gHTegDaAhHQJbeipVCHAR1fZQoaAZHP+WlruYx+KFoB0v9aAhHQJbgYtpVS4x1fZQoaAZHQFrj0EHMUypoB03oA2gIR0CW4IRpUPxydX2UKGgGR0Bkw3dRBNVSaAdN6ANoCEdAluG8HB1s+HV9lChoBkdAYxMDBdld1WgHTegDaAhHQJblYe7tiQV1fZQoaAZHQGTgeUyHmA9oB03oA2gIR0CW52/H5rP/dX2UKGgGR0BEGlByCFsYaAdNAAFoCEdAlu7BUrCm/HV9lChoBkdAZNo71ZkkKWgHTegDaAhHQJcNXLSuyNZ1fZQoaAZHQG9bIfSx7iRoB01yAmgIR0CXDZGEf1YhdX2UKGgGR0Bh5w1k1/DtaAdN6ANoCEdAlxGFIZqEe3V9lChoBkdAY8inAIppe2gHTegDaAhHQJcXLONYKY11fZQoaAZHQGNdjv3JxNtoB03oA2gIR0CXF7Nwzch1dX2UKGgGR0BQ565Xlr/LaAdL2WgIR0CXG8Pt2LYPdX2UKGgGR0BjrvLgXMyKaAdN6ANoCEdAlyG8LORkmXV9lChoBkdATFxNM495hWgHS+RoCEdAlyIUrwvxpnV9lChoBkdAYwu9/SYw7GgHTegDaAhHQJcnisKb8WN1fZQoaAZHQGL7JDeCTU1oB03oA2gIR0CXJ+jhUBGQdX2UKGgGR0BlACQHRkVfaAdN6ANoCEdAlymtknTiKnV9lChoBkdAY6M2OyVv/GgHTegDaAhHQJcuwFINEw51fZQoaAZHQGOz4NI9TxZoB03oA2gIR0CXL5yqdYnwdX2UKGgGR0BnKZPRArxzaAdN6ANoCEdAlzH+h9LHuXV9lChoBkdAZjeTEBKcu2gHTegDaAhHQJczs1pCa7V1fZQoaAZHQFFhqPwNLDhoB0vCaAhHQJc0wpKBd2R1fZQoaAZHQGPLeglF+d9oB03oA2gIR0CXOBtP557gdX2UKGgGR0BhPMsz2vjfaAdN6ANoCEdAlzpeJk5IYnV9lChoBkdAXekv114gR2gHTegDaAhHQJdAPxSYPXl1fZQoaAZHQGdEPxx1gYxoB03oA2gIR0CXXr0Re1KHdX2UKGgGR0BiiZwl0HQhaAdN6ANoCEdAl2f10knkUHV9lChoBkdAY+5uuzQeFWgHTegDaAhHQJdoes1baAZ1fZQoaAZHQFt5mv4dp7FoB03oA2gIR0CXbH0CRwIddX2UKGgGR0Bkh2/JvHcUaAdN6ANoCEdAl3C6bWmP53V9lChoBkdAXivNKRMewWgHTegDaAhHQJdw9iqhlDp1fZQoaAZHQGPB9CNS619oB03oA2gIR0CXdeWqLjxTdX2UKGgGR0BnQU43m3fAaAdN6ANoCEdAl3ZHgUDdQHV9lChoBkdASMIIhQm/nGgHS+loCEdAl3nyLIgeR3V9lChoBkdAYo0APNFBp2gHTegDaAhHQJd98WxhUip1fZQoaAZHQGNrD/uLJjloB03oA2gIR0CXfyQrc0tRdX2UKGgGR0Bh8Cv3ai9JaAdN6ANoCEdAl4JCWJJoTXV9lChoBkdAZf1RIjGDMGgHTegDaAhHQJeEBFF2FFl1fZQoaAZHQGHJ4zSCvoxoB03oA2gIR0CXhPYLb5/LdX2UKGgGR0Biis+qzZ6EaAdN6ANoCEdAl4gKYeDFqHV9lChoBkdAZ2EeKbayr2gHTegDaAhHQJeKMtbs4T91fZQoaAZHQGH6BY3eenRoB03oA2gIR0CXkFJyhi9adX2UKGgGR0A+rCKaXrt3aAdL/WgIR0CXkFKh+OOsdX2UKGgGR0BPrJoCdSVGaAdL1mgIR0CXlnLrHEMtdX2UKGgGR0Bg/3o7muDBaAdN6ANoCEdAl5tWEK3NLXV9lChoBkdAYbgNsnAqNWgHTegDaAhHQJe3JvxYq5N1fZQoaAZHQGLN+sHSncdoB03oA2gIR0CXt5yfL9uQdX2UKGgGR0BlwrrzGxUvaAdN6ANoCEdAl7+WsNlRQHV9lChoBkdAYI6MXrMTvmgHTegDaAhHQJe/1aLXL/11fZQoaAZHQGOjKOktVaRoB03oA2gIR0CXxJf2K2rodX2UKGgGR0BlcLdnCfpVaAdN6ANoCEdAl8Twz1schnV9lChoBkdARhqnR9gF5mgHTQABaAhHQJfF9d8iOed1fZQoaAZHQGInnDiwSrZoB03oA2gIR0CXyI5xBE8adX2UKGgGR0Bj3YmXw9aEaAdN6ANoCEdAl8uK4Ds+mnV9lChoBkdAZMyLRa5f+mgHTegDaAhHQJfMRgRbr1N1fZQoaAZHQF5dhwVCXyBoB03oA2gIR0CXz7n9NvfkdX2UKGgGR0BjuHv6TGHYaAdN6ANoCEdAl9C+j2zv7XV9lChoBkdAM3RDXvphW2gHTQoBaAhHQJfSqkSElE91fZQoaAZHQGFHFbVz6rNoB03oA2gIR0CX0/F7laKUdX2UKGgGR0BjfMPOIInjaAdN6ANoCEdAl9xSMHbAUXV9lChoBkdAZCCDoyKvV2gHTegDaAhHQJfcVbRnezl1fZQoaAZHQGJy91MdtEZoB03oA2gIR0CX5EJkGzKLdX2UKGgGR0BkDZG8VYZEaAdN6ANoCEdAl+liuyNXHXV9lChoBkdAZWJseGO+7GgHTegDaAhHQJgECLjxTbZ1fZQoaAZHQGMZXKSxJNFoB03oA2gIR0CYDVoXbdrPdX2UKGgGR0BkJiKgqVhTaAdN6ANoCEdAmA2yqMm4RXV9lChoBkdAZwmVDa4+bGgHTegDaAhHQJgU8BjnV5N1fZQoaAZHQGAbHX/YJ3RoB03oA2gIR0CYFhvZh8YydX2UKGgGR0BdzVzySV4YaAdN6ANoCEdAmBkS8an753V9lChoBkdAZw2bjtG/e2gHTegDaAhHQJgcPvttygh1fZQoaAZHQGiuk6DGtIVoB03oA2gIR0CYHRVMmF8HdX2UKGgGR0BknWepXIU8aAdN6ANoCEdAmCDuNo8IRnV9lChoBkdAYlRpN9H+ZWgHTegDaAhHQJgiDdadMCd1fZQoaAZHQGMNbR4QjD9oB03oA2gIR0CYJA9eyAx0dX2UKGgGR0Bfp1hTfixWaAdN6ANoCEdAmCVLGBFuvXV9lChoBkdAZCzZZB9kSWgHTegDaAhHQJguAlXzUZx1fZQoaAZHQGYrbkGRmshoB03oA2gIR0CYLgSV4X41dX2UKGgGR0BAuIbn5i3HaAdNBAFoCEdAmDO1eSjgynV9lChoBkdAZa5s3Q2MsGgHTegDaAhHQJg05Mbm2b51fZQoaAZHQGYcNX5nDixoB03oA2gIR0CYOkOMERradX2UKGgGR0BPEYetCAtnaAdNFAFoCEdAmFMxshxHXnV9lChoBkdAYbkYoAn2I2gHTegDaAhHQJhXZ67dzn11fZQoaAZHQF6X2gFotcxoB03oA2gIR0CYX8eBQN1AdX2UKGgGR0BmCX8MuvlmaAdN6ANoCEdAmGAJm/WUbHV9lChoBkdAYfyM72criGgHTegDaAhHQJhllZRsMy91fZQoaAZHQGBgShrWRRxoB03oA2gIR0CYZrY7q6e5dX2UKGgGR0BfSl67dznzaAdN6ANoCEdAmGlie2/i53V9lChoBkdAYtIkdFOO82gHTegDaAhHQJhtNzHS4ON1fZQoaAZHQGRJ5KODJ2doB03oA2gIR0CYbm6hxo7FdX2UKGgGR0BizieAd4mkaAdN6ANoCEdAmHOZccENfHV9lChoBkdAYv0mhM8HOmgHTegDaAhHQJh0h9hJAdJ1fZQoaAZHQGAzwiRnvlVoB03oA2gIR0CYd2d6cAindX2UKGgGR0BIz4VymygPaAdNHwFoCEdAmHrqltTDO3V9lChoBkdAZqHkyULUkWgHTegDaAhHQJh/BaKUFB91fZQoaAZHQFvgmVqveP9oB03oA2gIR0CYg7yad+XrdX2UKGgGR0BmbMOCoS+QaAdN6ANoCEdAmIStz0Yj0XV9lChoBkdAZVMUJv5xi2gHTegDaAhHQJiJNCOWBz51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93cf1b090303454cde9df31ce4e906f59e714c2ab902d6f03bcd596c5f6229a4
3
+ size 148076
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e87099b4a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e87099b4af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e87099b4b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e87099b4c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e87099b4ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e87099b4d30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e87099b4dc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e87099b4e50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e87099b4ee0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e87099b4f70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e87099b5000>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e87099b5090>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e870994cbc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1708093414054899915,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACWlTyfmuW7+7cMve8jID0UOTc6ROcEPQAAgD8AAIA/AKM+va5trLpS6Nc6WLOGNkbCH7corve5AACAPwAAgD9NcoQ9XHNEulinfbtzjU04r406u4JdejgAAIA/AACAPzM7Vz1c5126mQRIuVX44LKVW3C7S0poOAAAgD8AAIA/AMIXvYVjsbkY7dS7xksBOBoglDv6uQa3AACAPwAAgD+GU2++YWGHPvMldT7C0XG+Fm+gPR/0Cj4AAAAAAAAAABq8jj2up426fG6cOc1nkzTQdBU7cKS1uAAAgD8AAIA/ZsQrvBTsirrncQo7lqQkN+CZiDojcuq5AACAPwAAgD/AkLM9HD/QPoMvcr5y8F++Np3ovLhOj70AAAAAAAAAAGrLnr6XM2Q/RSftPeksqb5LIoW+FZSKPgAAAAAAAAAAAATHvOGwkbpWneK64tcXtnW8NDqesAE6AACAPwAAgD+zFU49UuivudzdL7qiUAC2cMlzOzDZTDkAAIA/AACAP2ZEWb3scdu5+PxLPKlfgjYRT6G7KnaHNQAAgD8AAIA/mgO5POGAhboVHGi6XrKXNVS7PDtGI4c5AACAPwAAgD9ALJ29pMAauTDnXDtJ4Zk27VCJOzoog7oAAAAAAACAPxpZnz0p1Ga6YCkfuzm++DfjH/O6M6d1NQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQKybYsd1eMAWyUTegDjAF0lEdAltm6UNayKXV9lChoBkdARLD238XN1WgHS9xoCEdAlt3QYP5HmXV9lChoBkdAYJT4gzP8h2gHTegDaAhHQJbeipVCHAR1fZQoaAZHP+WlruYx+KFoB0v9aAhHQJbgYtpVS4x1fZQoaAZHQFrj0EHMUypoB03oA2gIR0CW4IRpUPxydX2UKGgGR0Bkw3dRBNVSaAdN6ANoCEdAluG8HB1s+HV9lChoBkdAYxMDBdld1WgHTegDaAhHQJblYe7tiQV1fZQoaAZHQGTgeUyHmA9oB03oA2gIR0CW52/H5rP/dX2UKGgGR0BEGlByCFsYaAdNAAFoCEdAlu7BUrCm/HV9lChoBkdAZNo71ZkkKWgHTegDaAhHQJcNXLSuyNZ1fZQoaAZHQG9bIfSx7iRoB01yAmgIR0CXDZGEf1YhdX2UKGgGR0Bh5w1k1/DtaAdN6ANoCEdAlxGFIZqEe3V9lChoBkdAY8inAIppe2gHTegDaAhHQJcXLONYKY11fZQoaAZHQGNdjv3JxNtoB03oA2gIR0CXF7Nwzch1dX2UKGgGR0BQ565Xlr/LaAdL2WgIR0CXG8Pt2LYPdX2UKGgGR0BjrvLgXMyKaAdN6ANoCEdAlyG8LORkmXV9lChoBkdATFxNM495hWgHS+RoCEdAlyIUrwvxpnV9lChoBkdAYwu9/SYw7GgHTegDaAhHQJcnisKb8WN1fZQoaAZHQGL7JDeCTU1oB03oA2gIR0CXJ+jhUBGQdX2UKGgGR0BlACQHRkVfaAdN6ANoCEdAlymtknTiKnV9lChoBkdAY6M2OyVv/GgHTegDaAhHQJcuwFINEw51fZQoaAZHQGOz4NI9TxZoB03oA2gIR0CXL5yqdYnwdX2UKGgGR0BnKZPRArxzaAdN6ANoCEdAlzH+h9LHuXV9lChoBkdAZjeTEBKcu2gHTegDaAhHQJczs1pCa7V1fZQoaAZHQFFhqPwNLDhoB0vCaAhHQJc0wpKBd2R1fZQoaAZHQGPLeglF+d9oB03oA2gIR0CXOBtP557gdX2UKGgGR0BhPMsz2vjfaAdN6ANoCEdAlzpeJk5IYnV9lChoBkdAXekv114gR2gHTegDaAhHQJdAPxSYPXl1fZQoaAZHQGdEPxx1gYxoB03oA2gIR0CXXr0Re1KHdX2UKGgGR0BiiZwl0HQhaAdN6ANoCEdAl2f10knkUHV9lChoBkdAY+5uuzQeFWgHTegDaAhHQJdoes1baAZ1fZQoaAZHQFt5mv4dp7FoB03oA2gIR0CXbH0CRwIddX2UKGgGR0Bkh2/JvHcUaAdN6ANoCEdAl3C6bWmP53V9lChoBkdAXivNKRMewWgHTegDaAhHQJdw9iqhlDp1fZQoaAZHQGPB9CNS619oB03oA2gIR0CXdeWqLjxTdX2UKGgGR0BnQU43m3fAaAdN6ANoCEdAl3ZHgUDdQHV9lChoBkdASMIIhQm/nGgHS+loCEdAl3nyLIgeR3V9lChoBkdAYo0APNFBp2gHTegDaAhHQJd98WxhUip1fZQoaAZHQGNrD/uLJjloB03oA2gIR0CXfyQrc0tRdX2UKGgGR0Bh8Cv3ai9JaAdN6ANoCEdAl4JCWJJoTXV9lChoBkdAZf1RIjGDMGgHTegDaAhHQJeEBFF2FFl1fZQoaAZHQGHJ4zSCvoxoB03oA2gIR0CXhPYLb5/LdX2UKGgGR0Biis+qzZ6EaAdN6ANoCEdAl4gKYeDFqHV9lChoBkdAZ2EeKbayr2gHTegDaAhHQJeKMtbs4T91fZQoaAZHQGH6BY3eenRoB03oA2gIR0CXkFJyhi9adX2UKGgGR0A+rCKaXrt3aAdL/WgIR0CXkFKh+OOsdX2UKGgGR0BPrJoCdSVGaAdL1mgIR0CXlnLrHEMtdX2UKGgGR0Bg/3o7muDBaAdN6ANoCEdAl5tWEK3NLXV9lChoBkdAYbgNsnAqNWgHTegDaAhHQJe3JvxYq5N1fZQoaAZHQGLN+sHSncdoB03oA2gIR0CXt5yfL9uQdX2UKGgGR0BlwrrzGxUvaAdN6ANoCEdAl7+WsNlRQHV9lChoBkdAYI6MXrMTvmgHTegDaAhHQJe/1aLXL/11fZQoaAZHQGOjKOktVaRoB03oA2gIR0CXxJf2K2rodX2UKGgGR0BlcLdnCfpVaAdN6ANoCEdAl8Twz1schnV9lChoBkdARhqnR9gF5mgHTQABaAhHQJfF9d8iOed1fZQoaAZHQGInnDiwSrZoB03oA2gIR0CXyI5xBE8adX2UKGgGR0Bj3YmXw9aEaAdN6ANoCEdAl8uK4Ds+mnV9lChoBkdAZMyLRa5f+mgHTegDaAhHQJfMRgRbr1N1fZQoaAZHQF5dhwVCXyBoB03oA2gIR0CXz7n9NvfkdX2UKGgGR0BjuHv6TGHYaAdN6ANoCEdAl9C+j2zv7XV9lChoBkdAM3RDXvphW2gHTQoBaAhHQJfSqkSElE91fZQoaAZHQGFHFbVz6rNoB03oA2gIR0CX0/F7laKUdX2UKGgGR0BjfMPOIInjaAdN6ANoCEdAl9xSMHbAUXV9lChoBkdAZCCDoyKvV2gHTegDaAhHQJfcVbRnezl1fZQoaAZHQGJy91MdtEZoB03oA2gIR0CX5EJkGzKLdX2UKGgGR0BkDZG8VYZEaAdN6ANoCEdAl+liuyNXHXV9lChoBkdAZWJseGO+7GgHTegDaAhHQJgECLjxTbZ1fZQoaAZHQGMZXKSxJNFoB03oA2gIR0CYDVoXbdrPdX2UKGgGR0BkJiKgqVhTaAdN6ANoCEdAmA2yqMm4RXV9lChoBkdAZwmVDa4+bGgHTegDaAhHQJgU8BjnV5N1fZQoaAZHQGAbHX/YJ3RoB03oA2gIR0CYFhvZh8YydX2UKGgGR0BdzVzySV4YaAdN6ANoCEdAmBkS8an753V9lChoBkdAZw2bjtG/e2gHTegDaAhHQJgcPvttygh1fZQoaAZHQGiuk6DGtIVoB03oA2gIR0CYHRVMmF8HdX2UKGgGR0BknWepXIU8aAdN6ANoCEdAmCDuNo8IRnV9lChoBkdAYlRpN9H+ZWgHTegDaAhHQJgiDdadMCd1fZQoaAZHQGMNbR4QjD9oB03oA2gIR0CYJA9eyAx0dX2UKGgGR0Bfp1hTfixWaAdN6ANoCEdAmCVLGBFuvXV9lChoBkdAZCzZZB9kSWgHTegDaAhHQJguAlXzUZx1fZQoaAZHQGYrbkGRmshoB03oA2gIR0CYLgSV4X41dX2UKGgGR0BAuIbn5i3HaAdNBAFoCEdAmDO1eSjgynV9lChoBkdAZa5s3Q2MsGgHTegDaAhHQJg05Mbm2b51fZQoaAZHQGYcNX5nDixoB03oA2gIR0CYOkOMERradX2UKGgGR0BPEYetCAtnaAdNFAFoCEdAmFMxshxHXnV9lChoBkdAYbkYoAn2I2gHTegDaAhHQJhXZ67dzn11fZQoaAZHQF6X2gFotcxoB03oA2gIR0CYX8eBQN1AdX2UKGgGR0BmCX8MuvlmaAdN6ANoCEdAmGAJm/WUbHV9lChoBkdAYfyM72criGgHTegDaAhHQJhllZRsMy91fZQoaAZHQGBgShrWRRxoB03oA2gIR0CYZrY7q6e5dX2UKGgGR0BfSl67dznzaAdN6ANoCEdAmGlie2/i53V9lChoBkdAYtIkdFOO82gHTegDaAhHQJhtNzHS4ON1fZQoaAZHQGRJ5KODJ2doB03oA2gIR0CYbm6hxo7FdX2UKGgGR0BizieAd4mkaAdN6ANoCEdAmHOZccENfHV9lChoBkdAYv0mhM8HOmgHTegDaAhHQJh0h9hJAdJ1fZQoaAZHQGAzwiRnvlVoB03oA2gIR0CYd2d6cAindX2UKGgGR0BIz4VymygPaAdNHwFoCEdAmHrqltTDO3V9lChoBkdAZqHkyULUkWgHTegDaAhHQJh/BaKUFB91fZQoaAZHQFvgmVqveP9oB03oA2gIR0CYg7yad+XrdX2UKGgGR0BmbMOCoS+QaAdN6ANoCEdAmIStz0Yj0XV9lChoBkdAZVMUJv5xi2gHTegDaAhHQJiJNCOWBz51ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9c44bd81f18d200256ca6017bea13c5209d16995c3ab3cb2f78066ffb4889a4
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db75caf285cdec02c0d401623202cedc411e027ea66a5dbb4faffd7272962936
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (179 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.03795449999998, "std_reward": 13.232158467504402, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-16T14:55:34.719971"}