distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0620
- Precision: 0.9251
- Recall: 0.9350
- F1: 0.9300
- Accuracy: 0.9836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2356 | 1.0 | 878 | 0.0699 | 0.9110 | 0.9225 | 0.9167 | 0.9801 |
0.0509 | 2.0 | 1756 | 0.0621 | 0.9180 | 0.9314 | 0.9246 | 0.9823 |
0.0303 | 3.0 | 2634 | 0.0620 | 0.9251 | 0.9350 | 0.9300 | 0.9836 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train Eulaliefy/distilbert-base-uncased-finetuned-ner
Evaluation results
- Precision on conll2003self-reported0.925
- Recall on conll2003self-reported0.935
- F1 on conll2003self-reported0.930
- Accuracy on conll2003self-reported0.984