File size: 27,873 Bytes
dbd1a76
f5e640e
 
 
 
 
 
16b0f23
dbd1a76
 
9fd3ec1
dbd1a76
16b0f23
dbd1a76
f5e640e
dbd1a76
9fd3ec1
dbd1a76
f5e640e
dbd1a76
f5e640e
dbd1a76
f5e640e
 
 
 
dbd1a76
f5e640e
dbd1a76
16b0f23
dbd1a76
f5e640e
dbd1a76
9fd3ec1
f5e640e
dbd1a76
f5e640e
dbd1a76
f5e640e
dbd1a76
9fd3ec1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd1a76
f5e640e
dbd1a76
f5e640e
 
dbd1a76
f5e640e
dbd1a76
f5e640e
dbd1a76
9fd3ec1
 
 
 
 
 
 
dbd1a76
16b0f23
dbd1a76
f5e640e
dbd1a76
f5e640e
dbd1a76
f5e640e
 
 
 
dbd1a76
9fd3ec1
f5e640e
 
dbd1a76
f5e640e
 
dbd1a76
f5e640e
 
dbd1a76
f5e640e
 
dbd1a76
f5e640e
 
 
 
dbd1a76
9fd3ec1
dbd1a76
f5e640e
dbd1a76
f5e640e
dbd1a76
9fd3ec1
dbd1a76
f5e640e
dbd1a76
f5e640e
dbd1a76
f5e640e
dbd1a76
f5e640e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
---
language: en
tags:
- jax
- flax
- text-generation
- transformers
- meta-llama/Llama-3.2-3B # Add the specific model name as a tag
---

# meta-llama/Llama-3.2-3B - JAX/Flax

This repository contains the JAX/Flax version of the meta-llama/Llama-3.2-3B model, originally a PyTorch model from meta-llama. This conversion enables efficient inference and training on TPUs and GPUs using the JAX/Flax framework.

## Model Description

meta-llama/Llama-3.2-3B is a transformer-based language model developed by meta-llama. 

## Conversion Details

This model was converted from the original PyTorch implementation to JAX/Flax. The conversion process involved the following steps:

1. **Loading the PyTorch model and configuration:** The pretrained PyTorch model and its configuration were loaded using the Hugging Face Transformers library.
2. **Creating an equivalent Flax model architecture:** A Flax model with the same architecture as the original PyTorch model was created.
3. **Converting the PyTorch weights to Flax format:** The weights from the PyTorch model were converted to the Flax format using the `convert_pytorch_state_dict_to_flax` utility function provided by Hugging Face.
4. **Verifying the converted weights:** The converted Flax weights were compared against the original PyTorch weights to ensure that the conversion process was performed accurately.

### Important Note about `max_position_embeddings`

During the conversion process, it was necessary to modify the `max_position_embeddings` parameter in the model's configuration. The original value of 131072 led to out-of-memory (OOM) errors on the hardware used for conversion. To resolve this, `max_position_embeddings` was adjusted to 16384.

**Implications of this change:**

*   The model may not be able to handle sequences longer than 16384 tokens without truncation or other modifications.
*   If you fine-tune this model, keep in mind the revised `max_position_embeddings` when preparing your training data.

## Weight Comparison

The following table summarizes the comparison between the weights of the original PyTorch model and the converted JAX/Flax model. This detailed verification confirms that the conversion was accurate and that both models should produce (approximately) the same outputs given the same inputs.

| Layer | PyTorch Shape | Flax Shape | Allclose | Max Diff | Mean Diff | Std Diff |
| :---- | :------------ | :--------- | :------- | :------- | :-------- | :------- |
| model.embed_tokens.weight | (128256, 3072) | (128256, 3072) | True | 0 | 0 | 0 |
| model.layers.0.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.0.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.0.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.0.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.0.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.0.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.0.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.0.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.0.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.1.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.1.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.1.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.1.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.1.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.1.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.1.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.1.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.1.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.2.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.2.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.2.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.2.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.2.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.2.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.2.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.2.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.2.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.3.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.3.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.3.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.3.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.3.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.3.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.3.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.3.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.3.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.4.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.4.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.4.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.4.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.4.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.4.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.4.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.4.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.4.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.5.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.5.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.5.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.5.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.5.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.5.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.5.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.5.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.5.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.6.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.6.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.6.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.6.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.6.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.6.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.6.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.6.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.6.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.7.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.7.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.7.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.7.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.7.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.7.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.7.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.7.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.7.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.8.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.8.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.8.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.8.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.8.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.8.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.8.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.8.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.8.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.9.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.9.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.9.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.9.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.9.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.9.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.9.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.9.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.9.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.10.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.10.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.10.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.10.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.10.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.10.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.10.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.10.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.10.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.11.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.11.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.11.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.11.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.11.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.11.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.11.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.11.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.11.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.12.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.12.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.12.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.12.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.12.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.12.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.12.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.12.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.12.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.13.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.13.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.13.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.13.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.13.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.13.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.13.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.13.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.13.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.14.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.14.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.14.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.14.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.14.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.14.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.14.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.14.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.14.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.15.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.15.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.15.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.15.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.15.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.15.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.15.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.15.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.15.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.16.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.16.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.16.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.16.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.16.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.16.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.16.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.16.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.16.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.17.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.17.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.17.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.17.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.17.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.17.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.17.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.17.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.17.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.18.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.18.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.18.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.18.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.18.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.18.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.18.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.18.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.18.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.19.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.19.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.19.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.19.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.19.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.19.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.19.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.19.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.19.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.20.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.20.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.20.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.20.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.20.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.20.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.20.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.20.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.20.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.21.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.21.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.21.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.21.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.21.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.21.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.21.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.21.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.21.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.22.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.22.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.22.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.22.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.22.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.22.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.22.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.22.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.22.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.23.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.23.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.23.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.23.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.23.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.23.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.23.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.23.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.23.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.24.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.24.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.24.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.24.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.24.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.24.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.24.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.24.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.24.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.25.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.25.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.25.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.25.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.25.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.25.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.25.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.25.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.25.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.26.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.26.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.26.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.26.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.26.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.26.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.26.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.26.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.26.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.27.self_attn.q_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.27.self_attn.k_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.27.self_attn.v_proj.weight | (3072, 1024) | (3072, 1024) | True | 0 | 0 | 0 |
| model.layers.27.self_attn.o_proj.weight | (3072, 3072) | (3072, 3072) | True | 0 | 0 | 0 |
| model.layers.27.mlp.gate_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.27.mlp.up_proj.weight | (3072, 8192) | (3072, 8192) | True | 0 | 0 | 0 |
| model.layers.27.mlp.down_proj.weight | (8192, 3072) | (8192, 3072) | True | 0 | 0 | 0 |
| model.layers.27.input_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.layers.27.post_attention_layernorm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| model.norm.weight | (3072,) | (3072,) | True | 0 | 0 | 0 |
| lm_head.weight | (3072, 128256) | (3072, 128256) | True | 0 | 0 | 0 |

**Note:**

*   `Allclose` indicates whether the weights are approximately equal within the specified relative (`rtol=1e-5`) and absolute (`atol=1e-3`) tolerances using `jnp.allclose()`.
*   `Max Diff`, `Mean Diff`, and `Std Diff` provide further details on the differences between the weights if `Allclose` is `False`, which might be expected for some layers due to numerical precision differences between frameworks.

## Hardware Used for Conversion

The conversion process was performed on the following hardware configuration:

*   **CPU:** 
*   **RAM:** 251.67 GB
*   **OS:** Linux-5.15.0-107-generic-x86_64-with-glibc2.36
*   **JAX version:** 0.3.22
*   **Flax version:** 0.6.2
*   **Transformers version:** 4.47.0
*   **GPU:** NVIDIA A100-SXM4-40GB

This conversion took approximately 81.05 seconds to complete.

## Usage

Here's how you can use the converted model in JAX/Flax for text generation:

```python
import jax
import jax.numpy as jnp
from transformers import FlaxAutoModelForCausalLM, AutoTokenizer

model_name = "Erland/Llama-3.2-3B-JAX"  # Replace with your repository name
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = FlaxAutoModelForCausalLM.from_pretrained(model_name, from_pt=False) # from_pt should be False since it's already flax

# Example prompt
prompt = "The quick brown fox"

# Tokenize the prompt
tokenized_prompt = tokenizer(prompt, return_tensors="np")

# Generate text
output_ids = model.generate(tokenized_prompt.input_ids, max_length=50)

# Decode the generated text
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
```
## Limitations

Sequence Length: As mentioned earlier, the max_position_embeddings has been modified to 16384. Be mindful of this limitation when working with long sequences.

Numerical Precision: Minor differences in outputs compared to the original PyTorch model might be observed due to numerical precision variations between PyTorch and JAX/Flax, particularly on different hardware.

## Acknowledgements

We thank the original authors of meta-llama/Llama-3.2-3B at `meta-llama` for their groundbreaking work in developing this powerful language model.

We acknowledge the Hugging Face Transformers library for providing the essential tools and infrastructure that made this conversion possible.

Thanks to the JAX and Flax teams for developing such performant and flexible frameworks for numerical computation and deep learning.

## License

This JAX/Flax model is released under the original model license.