File size: 6,415 Bytes
dfbe3b7 e2ed12c 0933509 34c3e22 fb59a4f c863680 fb59a4f 34c3e22 dfbe3b7 2177b45 cb04486 2177b45 a61e766 2177b45 1db1896 2177b45 cb04486 2177b45 f54c831 2177b45 404c30d eb2798f 404c30d 2177b45 274d54b 9f6d4ce 5d850df 9f6d4ce 5d850df 9f6d4ce 2177b45 0978750 2177b45 26b8494 8c301d3 2177b45 c26f901 a335ff5 c26f901 2177b45 d992d99 2177b45 404c30d 0933509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
base_model: EpistemeAI/Fireball-Mistral-Nemo-Base-2407-sft-v2.2a
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
datasets:
- candenizkocak/code-alpaca-297k
- yahma/alpaca-cleaned
- reciperesearch/dolphin-sft-v0.1-preference
pipeline_tag: text-generation
model-index:
- name: Fireball-12B
results:
- task:
type: text-generation
dataset:
name: dolphin-sft-v0.1-preference
type: reciperesearch/dolphin-sft-v0.1-preference
metrics:
- name: MMLU_PRO
type: MMLU
value: 26.04
- name: bbh
type: bbh
value: 30.67
- name: IFEval
type: IFeval
value: 18.34
source:
name: Open LLM Leaderboard
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
---
<img src="https://huggingface.co/EpistemeAI/Fireball-Mistral-Nemo-Base-2407-v1-DPO2/resolve/main/fireball.JPG" width="200"/>
# Fireball-12B
This model is super fine-tune to provide better coding and better response(from first fine-tune) than Llama-3.1-8B and Google Gemma 2 9B.
Further fine tuned with ORPO method with dataset. Best use in alpaca(see **Prompt instructions - Alpaca style prompt(recommended)** ) instruct mode for best response, instead of chat mode.
- reciperesearch/dolphin-sft-v0.1-preference
# Benchmark
<img src="https://huggingface.co/EpistemeAI/Fireball-12B/resolve/main/benchmark2.jpg"/>
## Training Dataset
Supervised fine-tuning with dataset:
- candenizkocak/code-alpaca-297k
- yahma/alpaca-cleaned
# Model Card for Fireball-12B
The Heavy fine-tuned Mistral-Nemo-Base-2407 Large Language Model (LLM) is a pretrained generative text model of 12B parameters trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
For more details about this model please refer to our release [blog post](https://mistral.ai/news/mistral-nemo/).
## Key features
- Released under the **Apache 2 License**
- Pre-trained and instructed versions
- Trained with a **128k context window**
- Trained on a large proportion of **multilingual and code data**
- Drop-in replacement of Mistral 7B
## Model Architecture
Mistral Nemo is a transformer model, with the following architecture choices:
- **Layers:** 40
- **Dim:** 5,120
- **Head dim:** 128
- **Hidden dim:** 14,436
- **Activation Function:** SwiGLU
- **Number of heads:** 32
- **Number of kv-heads:** 8 (GQA)
- **Vocabulary size:** 2**17 ~= 128k
- **Rotary embeddings (theta = 1M)**
# Guardrail/Moderation guide:
For guardrailing and moderating prompts against indirect/direct prompt injections and jailbreaking, please follow the SentinelShield AI GitHub repository:
[SentinelShield AI](https://github.com/tomtyiu/SentinelShieldAI)
## Prompt Template: Alpaca (recommended)
plesee use Alpaca prompt
```python
f"""Below is an instruction that describes a task. \
Write a response that appropriately completes the request.
### Instruction:
{x['instruction']}
### Input:
{x['input']}
### Response:
"""
```
#### Demo
After installing `mistral_inference`, a `mistral-demo` CLI command should be available in your environment.
### Prompt instructions - Alpaca style prompt(recommended):
```py
f"""Below is an instruction that describes a task. \
Write a response that appropriately completes the request.
### Instruction:
{x['instruction']}
### Input:
{x['input']}
### Response:
"""
```
### Transformers
> [!IMPORTANT]
> NOTE: Until a new release has been made, you need to install transformers from source:
> ```sh
> pip install mistral_inference
> pip install mistral-demo
> pip install git+https://github.com/huggingface/transformers.git
> ```
If you want to use Hugging Face `transformers` to generate text, you can do something like this.
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "EpistemeAI/Fireball-12B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
inputs = tokenizer("Hello my name is", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Accelerator mode:
```py
pip install accelerate #GPU A100/L4
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import Accelerator
# Initialize the accelerator
accelerator = Accelerator()
# Define the model ID
model_id = "EpistemeAI/Fireball-12B"
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load the model and prepare it for distributed setup using accelerate
model = AutoModelForCausalLM.from_pretrained(model_id)
# Move the model to the appropriate device using accelerate
model, = accelerator.prepare(model)
# Prepare inputs
inputs = tokenizer("Hello my name is", return_tensors="pt").to(accelerator.device)
# Generate outputs with the model
outputs = model.generate(**inputs, max_new_tokens=20)
# Decode and print the outputs
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
> [!TIP]
> Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
## Note
`EpistemeAI/Fireball-12B` is a pretrained base model and therefore does not have any moderation mechanisms. Go to Guardrail/Moderation guide section for moderation guide
### Citation for yahma/alpaca-cleaned dataset
```
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
# Uploaded model
- **Developed by:** EpistemeAI
- **License:** apache-2.0
- **Finetuned from model :** EpistemeAI/Fireball-Mistral-Nemo-Base-2407-sft-v2.2a
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |