Uploaded model

  • Developed by: EpistemeAI
  • License: apache-2.0
  • Finetuned from model : unsloth/gemma-2-9b-bnb-4bit

This gemma2 model was trained 2x faster with Unsloth and Huggingface's TRL library.

This model is fine-tuned by 122k code instructions.

How to use This repository contains two versions of Gemma-2-9B, for use with transformers and with the original llama codebase.

Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function.

Make sure to update your transformers installation via pip install --upgrade transformers.

You need to prepare prompt in alpaca format to generate properly:

def format_test(x):

  if x['input']:
    formatted_text = f"""Below is an instruction that describes a task. \
    Write a response that appropriately completes the request.

    ### Instruction:
    {x['instruction']}

    ### Input:
    {x['input']}

    ### Response:
    """

  else:
    formatted_text = f"""Below is an instruction that describes a task. \
    Write a response that appropriately completes the request.

    ### Instruction:
    {x['instruction']}

    ### Response:
    """

  return formatted_text

# using code_instructions_122k_alpaca dataset
Prompt = format_test(data[155])
print(Prompt)
  • huggingface transformers method:
from transformers import TextStreamer

FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
    Prompt
], return_tensors = "pt").to("cuda")

text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 512)
  • unsloth method
from unsloth import FastLanguageModel

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "EpistemeAI/EpistemeAI-codegemma-2-9b", # YOUR MODEL YOU USED FOR TRAINING
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

# alpaca_prompt = You MUST copy from above!

inputs = tokenizer(
[
    alpaca_prompt.format(
        "Create a function to calculate the sum of a sequence of integers.", # instruction
        "", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)

--

Inputs and outputs

  • Input: Text string, such as a question, a prompt, or a document to be summarized.
  • Output: Generated English-language text in response to the input, such as an answer to a question, or a summary of a document.

Citation

@article{gemma_2024,
    title={Gemma},
    url={https://www.kaggle.com/m/3301},
    DOI={10.34740/KAGGLE/M/3301},
    publisher={Kaggle},
    author={Gemma Team},
    year={2024}
}

Model Data

Data used for model training and how the data was processed.

Training Dataset

These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens. Here are the key components:

  • Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content.
  • Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions.
  • Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries.

The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats.

Data Preprocessing

Here are the key data cleaning and filtering methods applied to the training data:

  • CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content.
  • Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets.
  • Additional methods: Filtering based on content quality and safety in line with [our policies][safety-policies].

Implementation Information

Details about the model internals.

Hardware

Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).

Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain:

  • Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs.
  • Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality.
  • Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing.
  • Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training.
  • These advantages are aligned with [Google's commitments to operate sustainably][sustainability].

Software

Training was done using [JAX][jax] and [ML Pathways][ml-pathways].

JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models.

ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models][foundation-models], including large language models like these ones.

Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models][gemini-2-paper]; "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow."

Evaluation

Model evaluation metrics and results.

Benchmark Results

These models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation:

Benchmark Metric Gemma PT 9B Gemma PT 27B
[MMLU][mmlu] 5-shot, top-1 71.3 75.2
[HellaSwag][hellaswag] 10-shot 81.9 86.4
[PIQA][piqa] 0-shot 81.7 83.2
[SocialIQA][socialiqa] 0-shot 53.4 53.7
[BoolQ][boolq] 0-shot 84.2 84.8
[WinoGrande][winogrande] partial score 80.6 83.7
[ARC-e][arc] 0-shot 88.0 88.6
[ARC-c][arc] 25-shot 68.4 71.4
[TriviaQA][triviaqa] 5-shot 76.6 83.7
[Natural Questions][naturalq] 5-shot 29.2 34.5
[HumanEval][humaneval] pass@1 40.2 51.8
[MBPP][mbpp] 3-shot 52.4 62.6
[GSM8K][gsm8k] 5-shot, maj@1 68.6 74.0
[MATH][math] 4-shot 36.6 42.3
[AGIEval][agieval] 3-5-shot 52.8 55.1
[BIG-Bench][big-bench] 3-shot, CoT 68.2 74.9
------------------------------ ------------- ----------- ------------

Ethics and Safety

Ethics and safety evaluation approach and results.

Evaluation Approach

Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:

  • Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech.
  • Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
  • Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure.
  • Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks.

Evaluation Results

The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies][safety-policies] for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well-known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here.

Gemma 2.0

Benchmark Metric Gemma 2 IT 9B Gemma 2 IT 27B
[RealToxicity][realtox] average 8.25 8.84
[CrowS-Pairs][crows] top-1 37.47 36.67
[BBQ Ambig][bbq] 1-shot, top-1 88.58 85.99
[BBQ Disambig][bbq] top-1 82.67 86.94
[Winogender][winogender] top-1 79.17 77.22
[TruthfulQA][truthfulqa] 50.27 51.60
[Winobias 1_2][winobias] 78.09 81.94
[Winobias 2_2][winobias] 95.32 97.22
[Toxigen][toxigen] 39.30 38.42
------------------------ ------------- --------------- ----------------

Usage and Limitations

These models have certain limitations that users should be aware of.

Intended Usage

Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development.

  • Content Creation and Communication
    • Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts.
    • Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications.
    • Text Summarization: Generate concise summaries of a text corpus, research papers, or reports.
  • Research and Education
    • Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field.
    • Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice.
    • Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics.

Limitations

  • Training Data
    • The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses.
    • The scope of the training dataset determines the subject areas the model can handle effectively.
  • Context and Task Complexity
    • LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging.
    • A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point).
  • Language Ambiguity and Nuance
    • Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language.
  • Factual Accuracy
    • LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements.
  • Common Sense
    • LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations.

Ethical Considerations and Risks

The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following:

  • Bias and Fairness

    • LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card.
  • Misinformation and Misuse

    • LLMs can be misused to generate text that is false, misleading, or harmful.
    • Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit][rai-toolkit].
  • Transparency and Accountability:

    • This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes.
    • A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations:
  • Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases.

  • Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases.

  • Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy][prohibited-use].

  • Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques.

Benefits

At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models.

Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized o

Notice:

Gemma is provided under and subject to the Gemma Terms of Use found at ai.google.dev/gemma/terms

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for EpistemeAI/EpistemeAI-codegemma-2-9b

Base model

google/gemma-2-9b
Finetuned
(294)
this model
Finetunes
1 model
Quantizations
2 models

Collection including EpistemeAI/EpistemeAI-codegemma-2-9b