cnn_news_summary_model_trained_on_reduced_data

This model is a fine-tuned version of Falconsai/text_summarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7748
  • Rouge1: 0.1505
  • Rouge2: 0.1077
  • Rougel: 0.1447
  • Rougelsum: 0.1447
  • Generated Length: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Generated Length
No log 1.0 1 0.7866 0.1505 0.1077 0.1447 0.1447 19.0
No log 2.0 2 0.7787 0.1505 0.1077 0.1447 0.1447 19.0
No log 3.0 3 0.7748 0.1505 0.1077 0.1447 0.1447 19.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for EmanDev/cnn_news_summary_model_trained_on_reduced_data

Finetuned
(19)
this model